Cargando…
Deep learning to decompose macromolecules into independent Markovian domains
The increasing interest in modeling the dynamics of ever larger proteins has revealed a fundamental problem with models that describe the molecular system as being in a global configuration state. This notion limits our ability to gather sufficient statistics of state probabilities or state-to-state...
Autores principales: | Mardt, Andreas, Hempel, Tim, Clementi, Cecilia, Noé, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675806/ https://www.ncbi.nlm.nih.gov/pubmed/36402768 http://dx.doi.org/10.1038/s41467-022-34603-z |
Ejemplares similares
-
VAMPnets for deep learning of molecular kinetics
por: Mardt, Andreas, et al.
Publicado: (2018) -
Author Correction: VAMPnets for deep learning of molecular kinetics
por: Mardt, Andreas, et al.
Publicado: (2018) -
Optimal Identification of Semi-Rigid Domains in Macromolecules from Molecular Dynamics Simulation
por: Bernhard, Stefan, et al.
Publicado: (2010) -
A scalable approach to the computation of invariant measures for high-dimensional Markovian systems
por: Gerber, Susanne, et al.
Publicado: (2018) -
TorchMD: A Deep Learning Framework for Molecular Simulations
por: Doerr, Stefan, et al.
Publicado: (2021)