Cargando…

Maximum power extraction and DC-Bus voltage regulation in grid-connected PV/BES system using modified incremental inductance with a novel inverter control

Low ripples and variations in the DC-Bus voltage in single-phase Photovoltaic/Battery Energy Storage (PV/BES) grid-connected systems may cause significant harmonics distortion, instability, and reduction in power factor. The use of short-life electrolytic capacitor on the DC-Bus is considered a stan...

Descripción completa

Detalles Bibliográficos
Autores principales: AL-Wesabi, Ibrahim, Zhijian, Fang, Hussein Farh, Hassan M., A. Al-Shamma’a, Abdullrahman, Dong, Hanlin, M. Al-Shaalan, Abdullah, Kandil, Tarek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675826/
https://www.ncbi.nlm.nih.gov/pubmed/36402812
http://dx.doi.org/10.1038/s41598-022-22952-0
_version_ 1784833456847454208
author AL-Wesabi, Ibrahim
Zhijian, Fang
Hussein Farh, Hassan M.
A. Al-Shamma’a, Abdullrahman
Dong, Hanlin
M. Al-Shaalan, Abdullah
Kandil, Tarek
author_facet AL-Wesabi, Ibrahim
Zhijian, Fang
Hussein Farh, Hassan M.
A. Al-Shamma’a, Abdullrahman
Dong, Hanlin
M. Al-Shaalan, Abdullah
Kandil, Tarek
author_sort AL-Wesabi, Ibrahim
collection PubMed
description Low ripples and variations in the DC-Bus voltage in single-phase Photovoltaic/Battery Energy Storage (PV/BES) grid-connected systems may cause significant harmonics distortion, instability, and reduction in power factor. The use of short-life electrolytic capacitor on the DC-Bus is considered a standard way for reducing these ripples and variations because of its large capacitance but results in short lifetime of the inverter. Replacing large electrolytic capacitors with small film capacitors can extend the lifetime of a PV/BES grid-connected system because small film capacitors have longer lifetime than large electrolytic capacitors. These film capacitors have low capacitance, which causes severe oscillations in the output current, and voltage drop due to huge ripples on the DC-Bus voltage. In this research, the main goal is to eliminate the output current ripples and voltage fluctuations associated with employing film capacitors. First, a modified incremental conductance (MIC) technique is proposed for tracking the maximum power by controlling the duty ratio of the DC-DC boost converter. Second, for the first time, a simple and novel d-q current regulation technique, which employs flowchart decision logic, is used in the DC-Bus control system for both the PV power system and the state of charge (SOC) of the BES. In this case, the DC-Bus controller is characterized by a cost-effective implementation because of its low sampling frequency. Although the presented approaches are successful in eliminating voltage distortion and fluctuations, they have unacceptable dynamic performance. Therefore, to improve the dynamic performance, BES was used to maintain a reliable and stable harvest from PV modules for varying loads while also increasing the dynamic performance of the overall system. The proposed PV/BES grid-connected systems, which employs a small 10-µF bus capacitor, is simulated and connected to the grid (230 V, 50 Hz). The DC-Bus voltage overshoot, undershoot and the total harmonics distortion (THD) of the output current for the proposed MIC are (1 V), (2.5 V) and (less than 5%), respectively. The average time response under rising radiation to track the global peak for MIC, traditional incremental conductance and variable step size incremental conductance are 1.403 s, 1.501 s and 1.113 s respectively. The obtained findings demonstrated the efficacy and superiority of the proposed d-q current control and MIC technique.
format Online
Article
Text
id pubmed-9675826
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-96758262022-11-21 Maximum power extraction and DC-Bus voltage regulation in grid-connected PV/BES system using modified incremental inductance with a novel inverter control AL-Wesabi, Ibrahim Zhijian, Fang Hussein Farh, Hassan M. A. Al-Shamma’a, Abdullrahman Dong, Hanlin M. Al-Shaalan, Abdullah Kandil, Tarek Sci Rep Article Low ripples and variations in the DC-Bus voltage in single-phase Photovoltaic/Battery Energy Storage (PV/BES) grid-connected systems may cause significant harmonics distortion, instability, and reduction in power factor. The use of short-life electrolytic capacitor on the DC-Bus is considered a standard way for reducing these ripples and variations because of its large capacitance but results in short lifetime of the inverter. Replacing large electrolytic capacitors with small film capacitors can extend the lifetime of a PV/BES grid-connected system because small film capacitors have longer lifetime than large electrolytic capacitors. These film capacitors have low capacitance, which causes severe oscillations in the output current, and voltage drop due to huge ripples on the DC-Bus voltage. In this research, the main goal is to eliminate the output current ripples and voltage fluctuations associated with employing film capacitors. First, a modified incremental conductance (MIC) technique is proposed for tracking the maximum power by controlling the duty ratio of the DC-DC boost converter. Second, for the first time, a simple and novel d-q current regulation technique, which employs flowchart decision logic, is used in the DC-Bus control system for both the PV power system and the state of charge (SOC) of the BES. In this case, the DC-Bus controller is characterized by a cost-effective implementation because of its low sampling frequency. Although the presented approaches are successful in eliminating voltage distortion and fluctuations, they have unacceptable dynamic performance. Therefore, to improve the dynamic performance, BES was used to maintain a reliable and stable harvest from PV modules for varying loads while also increasing the dynamic performance of the overall system. The proposed PV/BES grid-connected systems, which employs a small 10-µF bus capacitor, is simulated and connected to the grid (230 V, 50 Hz). The DC-Bus voltage overshoot, undershoot and the total harmonics distortion (THD) of the output current for the proposed MIC are (1 V), (2.5 V) and (less than 5%), respectively. The average time response under rising radiation to track the global peak for MIC, traditional incremental conductance and variable step size incremental conductance are 1.403 s, 1.501 s and 1.113 s respectively. The obtained findings demonstrated the efficacy and superiority of the proposed d-q current control and MIC technique. Nature Publishing Group UK 2022-11-19 /pmc/articles/PMC9675826/ /pubmed/36402812 http://dx.doi.org/10.1038/s41598-022-22952-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
AL-Wesabi, Ibrahim
Zhijian, Fang
Hussein Farh, Hassan M.
A. Al-Shamma’a, Abdullrahman
Dong, Hanlin
M. Al-Shaalan, Abdullah
Kandil, Tarek
Maximum power extraction and DC-Bus voltage regulation in grid-connected PV/BES system using modified incremental inductance with a novel inverter control
title Maximum power extraction and DC-Bus voltage regulation in grid-connected PV/BES system using modified incremental inductance with a novel inverter control
title_full Maximum power extraction and DC-Bus voltage regulation in grid-connected PV/BES system using modified incremental inductance with a novel inverter control
title_fullStr Maximum power extraction and DC-Bus voltage regulation in grid-connected PV/BES system using modified incremental inductance with a novel inverter control
title_full_unstemmed Maximum power extraction and DC-Bus voltage regulation in grid-connected PV/BES system using modified incremental inductance with a novel inverter control
title_short Maximum power extraction and DC-Bus voltage regulation in grid-connected PV/BES system using modified incremental inductance with a novel inverter control
title_sort maximum power extraction and dc-bus voltage regulation in grid-connected pv/bes system using modified incremental inductance with a novel inverter control
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675826/
https://www.ncbi.nlm.nih.gov/pubmed/36402812
http://dx.doi.org/10.1038/s41598-022-22952-0
work_keys_str_mv AT alwesabiibrahim maximumpowerextractionanddcbusvoltageregulationingridconnectedpvbessystemusingmodifiedincrementalinductancewithanovelinvertercontrol
AT zhijianfang maximumpowerextractionanddcbusvoltageregulationingridconnectedpvbessystemusingmodifiedincrementalinductancewithanovelinvertercontrol
AT husseinfarhhassanm maximumpowerextractionanddcbusvoltageregulationingridconnectedpvbessystemusingmodifiedincrementalinductancewithanovelinvertercontrol
AT aalshammaaabdullrahman maximumpowerextractionanddcbusvoltageregulationingridconnectedpvbessystemusingmodifiedincrementalinductancewithanovelinvertercontrol
AT donghanlin maximumpowerextractionanddcbusvoltageregulationingridconnectedpvbessystemusingmodifiedincrementalinductancewithanovelinvertercontrol
AT malshaalanabdullah maximumpowerextractionanddcbusvoltageregulationingridconnectedpvbessystemusingmodifiedincrementalinductancewithanovelinvertercontrol
AT kandiltarek maximumpowerextractionanddcbusvoltageregulationingridconnectedpvbessystemusingmodifiedincrementalinductancewithanovelinvertercontrol