Cargando…

Ultrafast switching in synthetic antiferromagnet with bilayer rare-earth transition-metal ferrimagnets

In spintronics, it is important to be able to manipulate magnetization rapidly and reliably. Several methods can control magnetization, such as by applying current pulses or magnetic fields. An applied current can reverse magnetization with nanosecond speed through the spin torque effect. For faster...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Chung Ting, Zhou, Wei, Poon, S. Joseph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675831/
https://www.ncbi.nlm.nih.gov/pubmed/36402797
http://dx.doi.org/10.1038/s41598-022-24234-1
Descripción
Sumario:In spintronics, it is important to be able to manipulate magnetization rapidly and reliably. Several methods can control magnetization, such as by applying current pulses or magnetic fields. An applied current can reverse magnetization with nanosecond speed through the spin torque effect. For faster switching, subpicosecond switching with femtoseconds laser pulse has been achieved in amorphous rare-earth transition-metal ferrimagnets. In this study, we employed atomistic simulations to investigate ultrafast switching in a synthetic antiferromagnet with bilayer amorphous FeGd ferrimagnets. Using a two-temperature model, we demonstrated ultrafast switching in this synthetic antiferromagnet without external magnetic fields. Furthermore, we showed that if we initially stabilize a skyrmion in this heterostructure, the ultrafast laser can switch the skyrmion state using the same mechanism. Furthermore, this bilayer design allows the control of each ferrimagnetic layer individually and opens the possibility for a magnetic tunnel junction.