Cargando…

Improving the accuracy of estimates of the pulse sequence period using the methodology of complete sufficient statistics

This paper is devoted to the synthesis of new signal processing algorithms based on the methodology of complete sufficient statistics and the possibility of using the Lehmann–Scheffe theorem. Using the example of a sequence of quasi-rectangular pulses, an approach to estimating their period was illu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhuchkov, Konstantin, Vasilchenko, Mikhail, Zagrebneva, Anna, Zavyalov, Alexey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675836/
https://www.ncbi.nlm.nih.gov/pubmed/36402901
http://dx.doi.org/10.1038/s41598-022-24457-2
Descripción
Sumario:This paper is devoted to the synthesis of new signal processing algorithms based on the methodology of complete sufficient statistics and the possibility of using the Lehmann–Scheffe theorem. Using the example of a sequence of quasi-rectangular pulses, an approach to estimating their period was illustrated, taking into account the duty-off factor and the pulse squareness coefficient. A mathematical model was developed, on the basis of which, estimates of the potential accuracy of the methods were carried out. It is established that for the sample size value (n > 8), the relative root-mean-square error of estimating the repetition period using the methodology of complete sufficient statistics is lower than that of the traditional estimate. In addition to theoretical calculations, simulation results confirming the achieved effect are presented. The results obtained have a wide range of applicability and can be used in the design of control and measuring equipment in the oil and gas industry, in the development of medical equipment, in the field of telecommunications, in the design of pulse-Doppler radars, etc.