Cargando…
Design and application of organic contrast agents for molecular imaging in the second near infrared (NIR-II) window
Optical imaging in the second near-infrared (NIR-II) window has attracted interest in recent years because of the merits of reduced light scattering, minimal autofluorescence from biological tissues and deeper penetration depth in this wavelength range. In this review, we summarize NIR-II organic co...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676394/ https://www.ncbi.nlm.nih.gov/pubmed/36419744 http://dx.doi.org/10.1016/j.pacs.2022.100426 |
Sumario: | Optical imaging in the second near-infrared (NIR-II) window has attracted interest in recent years because of the merits of reduced light scattering, minimal autofluorescence from biological tissues and deeper penetration depth in this wavelength range. In this review, we summarize NIR-II organic contrast agents reported in the past decade for photoacoustic and fluorescence imaging including members of the cyanine family, D-A-D structure dyes, phthalocyanines and semiconducting polymers. Improved imaging contrast and higher resolution could be favorably achieved by rational design of NIR-II fluorophores by tuning their properties including molar extinction coefficient, fluorescence quantum yield, emission wavelength and others. A wide variety of applications using NIR-II dyes has been realized including imaging of tumors, lymphatics, brains, intestines and others. Emerging applications such as targeted imaging and activable imaging with improved resolution and sensitivity have been demonstrated by innovative chemical modification of NIR-II dyes. Looking forward, rational design of improved NIR-II dyes for advanced bioimaging is likely to remain an area of interest for next-generation potential approaches to disease diagnosis. |
---|