Cargando…
Can we share models if sharing data is not an option?
In the big data era, vast volumes of data are generated daily as the foundation of data-driven scientific discovery. Thanks to the recent open data movement, much of these data are being made available to the public, significantly advancing scientific research and accelerating socio-technical develo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676535/ https://www.ncbi.nlm.nih.gov/pubmed/36419446 http://dx.doi.org/10.1016/j.patter.2022.100603 |
_version_ | 1784833618997149696 |
---|---|
author | Li, Zexi Mao, Feng Wu, Chao |
author_facet | Li, Zexi Mao, Feng Wu, Chao |
author_sort | Li, Zexi |
collection | PubMed |
description | In the big data era, vast volumes of data are generated daily as the foundation of data-driven scientific discovery. Thanks to the recent open data movement, much of these data are being made available to the public, significantly advancing scientific research and accelerating socio-technical development. However, not all data are suitable for opening or sharing because of concerns over privacy, ownership, trust, and incentive. Therefore, data sharing remains a challenge for specific data types and holders, making a bottleneck for further unleashing the potential of these “closed data.” To address this challenge, in this perspective, we conceptualize the current practices and technologies in data collaboration in a data-sharing-free manner and propose a concept of the model-sharing strategy for using closed data without sharing them. Supported by emerging advances in artificial intelligence, this strategy will unleash the large potential in closed data. Moreover, we show the advantages of the model-sharing strategy and explain how it will lead to a new paradigm of big data governance and collaboration. |
format | Online Article Text |
id | pubmed-9676535 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96765352022-11-22 Can we share models if sharing data is not an option? Li, Zexi Mao, Feng Wu, Chao Patterns (N Y) Perspective In the big data era, vast volumes of data are generated daily as the foundation of data-driven scientific discovery. Thanks to the recent open data movement, much of these data are being made available to the public, significantly advancing scientific research and accelerating socio-technical development. However, not all data are suitable for opening or sharing because of concerns over privacy, ownership, trust, and incentive. Therefore, data sharing remains a challenge for specific data types and holders, making a bottleneck for further unleashing the potential of these “closed data.” To address this challenge, in this perspective, we conceptualize the current practices and technologies in data collaboration in a data-sharing-free manner and propose a concept of the model-sharing strategy for using closed data without sharing them. Supported by emerging advances in artificial intelligence, this strategy will unleash the large potential in closed data. Moreover, we show the advantages of the model-sharing strategy and explain how it will lead to a new paradigm of big data governance and collaboration. Elsevier 2022-11-11 /pmc/articles/PMC9676535/ /pubmed/36419446 http://dx.doi.org/10.1016/j.patter.2022.100603 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Perspective Li, Zexi Mao, Feng Wu, Chao Can we share models if sharing data is not an option? |
title | Can we share models if sharing data is not an option? |
title_full | Can we share models if sharing data is not an option? |
title_fullStr | Can we share models if sharing data is not an option? |
title_full_unstemmed | Can we share models if sharing data is not an option? |
title_short | Can we share models if sharing data is not an option? |
title_sort | can we share models if sharing data is not an option? |
topic | Perspective |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676535/ https://www.ncbi.nlm.nih.gov/pubmed/36419446 http://dx.doi.org/10.1016/j.patter.2022.100603 |
work_keys_str_mv | AT lizexi canwesharemodelsifsharingdataisnotanoption AT maofeng canwesharemodelsifsharingdataisnotanoption AT wuchao canwesharemodelsifsharingdataisnotanoption |