Cargando…

A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images

Treatment decisions for brain metastatic disease rely on knowledge of the primary organ site and are currently made with biopsy and histology. Here, we develop a deep-learning approach for accurate non-invasive digital histology with whole-brain magnetic resonance imaging (MRI) data. Contrast-enhanc...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyu, Qing, Namjoshi, Sanjeev V., McTyre, Emory, Topaloglu, Umit, Barcus, Richard, Chan, Michael D., Cramer, Christina K., Debinski, Waldemar, Gurcan, Metin N., Lesser, Glenn J., Lin, Hui-Kuan, Munden, Reginald F., Pasche, Boris C., Sai, Kiran K.S., Strowd, Roy E., Tatter, Stephen B., Watabe, Kounosuke, Zhang, Wei, Wang, Ge, Whitlow, Christopher T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676537/
https://www.ncbi.nlm.nih.gov/pubmed/36419451
http://dx.doi.org/10.1016/j.patter.2022.100613
_version_ 1784833619500466176
author Lyu, Qing
Namjoshi, Sanjeev V.
McTyre, Emory
Topaloglu, Umit
Barcus, Richard
Chan, Michael D.
Cramer, Christina K.
Debinski, Waldemar
Gurcan, Metin N.
Lesser, Glenn J.
Lin, Hui-Kuan
Munden, Reginald F.
Pasche, Boris C.
Sai, Kiran K.S.
Strowd, Roy E.
Tatter, Stephen B.
Watabe, Kounosuke
Zhang, Wei
Wang, Ge
Whitlow, Christopher T.
author_facet Lyu, Qing
Namjoshi, Sanjeev V.
McTyre, Emory
Topaloglu, Umit
Barcus, Richard
Chan, Michael D.
Cramer, Christina K.
Debinski, Waldemar
Gurcan, Metin N.
Lesser, Glenn J.
Lin, Hui-Kuan
Munden, Reginald F.
Pasche, Boris C.
Sai, Kiran K.S.
Strowd, Roy E.
Tatter, Stephen B.
Watabe, Kounosuke
Zhang, Wei
Wang, Ge
Whitlow, Christopher T.
author_sort Lyu, Qing
collection PubMed
description Treatment decisions for brain metastatic disease rely on knowledge of the primary organ site and are currently made with biopsy and histology. Here, we develop a deep-learning approach for accurate non-invasive digital histology with whole-brain magnetic resonance imaging (MRI) data. Contrast-enhanced T1-weighted and fast spoiled gradient echo brain MRI exams (n = 1,582) were preprocessed and input to the proposed deep-learning workflow for tumor segmentation, modality transfer, and primary site classification into one of five classes. Tenfold cross-validation generated an overall area under the receiver operating characteristic curve (AUC) of 0.878 (95% confidence interval [CI]: 0.873,0.883). These data establish that whole-brain imaging features are discriminative enough to allow accurate diagnosis of the primary organ site of malignancy. Our end-to-end deep radiomic approach has great potential for classifying metastatic tumor types from whole-brain MRI images. Further refinement may offer an invaluable clinical tool to expedite primary cancer site identification for precision treatment and improved outcomes.
format Online
Article
Text
id pubmed-9676537
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-96765372022-11-22 A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images Lyu, Qing Namjoshi, Sanjeev V. McTyre, Emory Topaloglu, Umit Barcus, Richard Chan, Michael D. Cramer, Christina K. Debinski, Waldemar Gurcan, Metin N. Lesser, Glenn J. Lin, Hui-Kuan Munden, Reginald F. Pasche, Boris C. Sai, Kiran K.S. Strowd, Roy E. Tatter, Stephen B. Watabe, Kounosuke Zhang, Wei Wang, Ge Whitlow, Christopher T. Patterns (N Y) Article Treatment decisions for brain metastatic disease rely on knowledge of the primary organ site and are currently made with biopsy and histology. Here, we develop a deep-learning approach for accurate non-invasive digital histology with whole-brain magnetic resonance imaging (MRI) data. Contrast-enhanced T1-weighted and fast spoiled gradient echo brain MRI exams (n = 1,582) were preprocessed and input to the proposed deep-learning workflow for tumor segmentation, modality transfer, and primary site classification into one of five classes. Tenfold cross-validation generated an overall area under the receiver operating characteristic curve (AUC) of 0.878 (95% confidence interval [CI]: 0.873,0.883). These data establish that whole-brain imaging features are discriminative enough to allow accurate diagnosis of the primary organ site of malignancy. Our end-to-end deep radiomic approach has great potential for classifying metastatic tumor types from whole-brain MRI images. Further refinement may offer an invaluable clinical tool to expedite primary cancer site identification for precision treatment and improved outcomes. Elsevier 2022-10-27 /pmc/articles/PMC9676537/ /pubmed/36419451 http://dx.doi.org/10.1016/j.patter.2022.100613 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Lyu, Qing
Namjoshi, Sanjeev V.
McTyre, Emory
Topaloglu, Umit
Barcus, Richard
Chan, Michael D.
Cramer, Christina K.
Debinski, Waldemar
Gurcan, Metin N.
Lesser, Glenn J.
Lin, Hui-Kuan
Munden, Reginald F.
Pasche, Boris C.
Sai, Kiran K.S.
Strowd, Roy E.
Tatter, Stephen B.
Watabe, Kounosuke
Zhang, Wei
Wang, Ge
Whitlow, Christopher T.
A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images
title A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images
title_full A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images
title_fullStr A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images
title_full_unstemmed A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images
title_short A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images
title_sort transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain mri images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676537/
https://www.ncbi.nlm.nih.gov/pubmed/36419451
http://dx.doi.org/10.1016/j.patter.2022.100613
work_keys_str_mv AT lyuqing atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT namjoshisanjeevv atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT mctyreemory atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT topalogluumit atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT barcusrichard atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT chanmichaeld atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT cramerchristinak atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT debinskiwaldemar atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT gurcanmetinn atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT lesserglennj atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT linhuikuan atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT mundenreginaldf atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT pascheborisc atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT saikiranks atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT strowdroye atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT tatterstephenb atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT watabekounosuke atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT zhangwei atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT wangge atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT whitlowchristophert atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT lyuqing transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT namjoshisanjeevv transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT mctyreemory transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT topalogluumit transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT barcusrichard transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT chanmichaeld transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT cramerchristinak transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT debinskiwaldemar transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT gurcanmetinn transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT lesserglennj transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT linhuikuan transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT mundenreginaldf transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT pascheborisc transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT saikiranks transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT strowdroye transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT tatterstephenb transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT watabekounosuke transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT zhangwei transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT wangge transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages
AT whitlowchristophert transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages