Cargando…
A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images
Treatment decisions for brain metastatic disease rely on knowledge of the primary organ site and are currently made with biopsy and histology. Here, we develop a deep-learning approach for accurate non-invasive digital histology with whole-brain magnetic resonance imaging (MRI) data. Contrast-enhanc...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676537/ https://www.ncbi.nlm.nih.gov/pubmed/36419451 http://dx.doi.org/10.1016/j.patter.2022.100613 |
_version_ | 1784833619500466176 |
---|---|
author | Lyu, Qing Namjoshi, Sanjeev V. McTyre, Emory Topaloglu, Umit Barcus, Richard Chan, Michael D. Cramer, Christina K. Debinski, Waldemar Gurcan, Metin N. Lesser, Glenn J. Lin, Hui-Kuan Munden, Reginald F. Pasche, Boris C. Sai, Kiran K.S. Strowd, Roy E. Tatter, Stephen B. Watabe, Kounosuke Zhang, Wei Wang, Ge Whitlow, Christopher T. |
author_facet | Lyu, Qing Namjoshi, Sanjeev V. McTyre, Emory Topaloglu, Umit Barcus, Richard Chan, Michael D. Cramer, Christina K. Debinski, Waldemar Gurcan, Metin N. Lesser, Glenn J. Lin, Hui-Kuan Munden, Reginald F. Pasche, Boris C. Sai, Kiran K.S. Strowd, Roy E. Tatter, Stephen B. Watabe, Kounosuke Zhang, Wei Wang, Ge Whitlow, Christopher T. |
author_sort | Lyu, Qing |
collection | PubMed |
description | Treatment decisions for brain metastatic disease rely on knowledge of the primary organ site and are currently made with biopsy and histology. Here, we develop a deep-learning approach for accurate non-invasive digital histology with whole-brain magnetic resonance imaging (MRI) data. Contrast-enhanced T1-weighted and fast spoiled gradient echo brain MRI exams (n = 1,582) were preprocessed and input to the proposed deep-learning workflow for tumor segmentation, modality transfer, and primary site classification into one of five classes. Tenfold cross-validation generated an overall area under the receiver operating characteristic curve (AUC) of 0.878 (95% confidence interval [CI]: 0.873,0.883). These data establish that whole-brain imaging features are discriminative enough to allow accurate diagnosis of the primary organ site of malignancy. Our end-to-end deep radiomic approach has great potential for classifying metastatic tumor types from whole-brain MRI images. Further refinement may offer an invaluable clinical tool to expedite primary cancer site identification for precision treatment and improved outcomes. |
format | Online Article Text |
id | pubmed-9676537 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96765372022-11-22 A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images Lyu, Qing Namjoshi, Sanjeev V. McTyre, Emory Topaloglu, Umit Barcus, Richard Chan, Michael D. Cramer, Christina K. Debinski, Waldemar Gurcan, Metin N. Lesser, Glenn J. Lin, Hui-Kuan Munden, Reginald F. Pasche, Boris C. Sai, Kiran K.S. Strowd, Roy E. Tatter, Stephen B. Watabe, Kounosuke Zhang, Wei Wang, Ge Whitlow, Christopher T. Patterns (N Y) Article Treatment decisions for brain metastatic disease rely on knowledge of the primary organ site and are currently made with biopsy and histology. Here, we develop a deep-learning approach for accurate non-invasive digital histology with whole-brain magnetic resonance imaging (MRI) data. Contrast-enhanced T1-weighted and fast spoiled gradient echo brain MRI exams (n = 1,582) were preprocessed and input to the proposed deep-learning workflow for tumor segmentation, modality transfer, and primary site classification into one of five classes. Tenfold cross-validation generated an overall area under the receiver operating characteristic curve (AUC) of 0.878 (95% confidence interval [CI]: 0.873,0.883). These data establish that whole-brain imaging features are discriminative enough to allow accurate diagnosis of the primary organ site of malignancy. Our end-to-end deep radiomic approach has great potential for classifying metastatic tumor types from whole-brain MRI images. Further refinement may offer an invaluable clinical tool to expedite primary cancer site identification for precision treatment and improved outcomes. Elsevier 2022-10-27 /pmc/articles/PMC9676537/ /pubmed/36419451 http://dx.doi.org/10.1016/j.patter.2022.100613 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Lyu, Qing Namjoshi, Sanjeev V. McTyre, Emory Topaloglu, Umit Barcus, Richard Chan, Michael D. Cramer, Christina K. Debinski, Waldemar Gurcan, Metin N. Lesser, Glenn J. Lin, Hui-Kuan Munden, Reginald F. Pasche, Boris C. Sai, Kiran K.S. Strowd, Roy E. Tatter, Stephen B. Watabe, Kounosuke Zhang, Wei Wang, Ge Whitlow, Christopher T. A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images |
title | A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images |
title_full | A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images |
title_fullStr | A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images |
title_full_unstemmed | A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images |
title_short | A transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain MRI images |
title_sort | transformer-based deep-learning approach for classifying brain metastases into primary organ sites using clinical whole-brain mri images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676537/ https://www.ncbi.nlm.nih.gov/pubmed/36419451 http://dx.doi.org/10.1016/j.patter.2022.100613 |
work_keys_str_mv | AT lyuqing atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT namjoshisanjeevv atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT mctyreemory atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT topalogluumit atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT barcusrichard atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT chanmichaeld atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT cramerchristinak atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT debinskiwaldemar atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT gurcanmetinn atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT lesserglennj atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT linhuikuan atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT mundenreginaldf atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT pascheborisc atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT saikiranks atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT strowdroye atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT tatterstephenb atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT watabekounosuke atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT zhangwei atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT wangge atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT whitlowchristophert atransformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT lyuqing transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT namjoshisanjeevv transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT mctyreemory transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT topalogluumit transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT barcusrichard transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT chanmichaeld transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT cramerchristinak transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT debinskiwaldemar transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT gurcanmetinn transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT lesserglennj transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT linhuikuan transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT mundenreginaldf transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT pascheborisc transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT saikiranks transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT strowdroye transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT tatterstephenb transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT watabekounosuke transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT zhangwei transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT wangge transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages AT whitlowchristophert transformerbaseddeeplearningapproachforclassifyingbrainmetastasesintoprimaryorgansitesusingclinicalwholebrainmriimages |