Cargando…
Data-driven learning of Boolean networks and functions by optimal causation entropy principle
Boolean functions, and networks thereof, are useful for analysis of complex data systems, including from biological systems, bioinformatics, decision making, medical fields, and finance. However, automated learning of a Boolean networked function, from data, is a challenging task due in part to the...
Autores principales: | Sun, Jie, AlMomani, Abd AlRahman R., Bollt, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676542/ https://www.ncbi.nlm.nih.gov/pubmed/36419440 http://dx.doi.org/10.1016/j.patter.2022.100631 |
Ejemplares similares
-
Geometric Partition Entropy: Coarse-Graining a Continuous State Space
por: Diggans, Christopher Tyler, et al.
Publicado: (2022) -
Boolean Feedforward Neural Network Modeling of Molecular Regulatory Networks for Cellular State Conversion
por: Choo, Sang-Mok, et al.
Publicado: (2020) -
Principles and applications of Boolean algebra for electronic engineers
por: Adelfio, Salvatore A, et al.
Publicado: (1965) -
Learning restricted Boolean network model by time-series data
por: Ouyang, Hongjia, et al.
Publicado: (2014) -
A Novel Data-Driven Boolean Model for Genetic Regulatory Networks
por: Chen, Leshi, et al.
Publicado: (2018)