Cargando…
EEG-based spatial elements optimisation design method
In the field of digital design, a recent hot topic is the study of the interaction between spatial environment design and human factors. Electroencephalogram (EEG) and eye tracking can be used as quantitative analysis methods for architectural space evaluation; however, conclusions from existing stu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676777/ https://www.ncbi.nlm.nih.gov/pubmed/36439646 http://dx.doi.org/10.1007/s44223-022-00017-6 |
Sumario: | In the field of digital design, a recent hot topic is the study of the interaction between spatial environment design and human factors. Electroencephalogram (EEG) and eye tracking can be used as quantitative analysis methods for architectural space evaluation; however, conclusions from existing studies on improving the quality of spatial environments based on human factors tend to remain qualitative. In order to realise the quantitative optimisation design of spatial elements from human physiological data, this research used the digital space optimisation method and perceptual evaluation research. In this way, it established an optimisation method for built space elements in real-time using human psychological indicators. Firstly, this method used the specific indicators of the Meditation value and Attention value in the human EEG signal, taking the ThinkGear AM (TGAM) module as the optimisation objective, the architectural space colour and the window size as the optimisation object, and the multi-objective genetic algorithm as the optimisation tool. Secondly, this research combined virtual reality scenarios and parametric linkage models to realise this optimisation method to establish a tool platform and workflow. Thirdly, this study took the optimisation of a typical living space as an example and recruited 50 volunteers to participate in an optimisation experiment. The results indicated that with the iterative optimisation of the multi-objective genetic algorithm, the specific EEG index decreases significantly and the standard deviation of the in-dex fluctuates and decreases during the iterative process, which further indicates that the optimisation method established in this study with the specific EEG index as the optimisation objective is effective and feasible. In addition, this study laid the foundation for more EEG indicators and more complex spatial element opti-misation research in the future. |
---|