Cargando…
Evaluation of single-cell RNA-seq clustering algorithms on cancer tumor datasets
Tumors are complex biological entities that comprise cell types of different origins, with different mutational profiles and different patterns of transcriptional dysregulation. The exploration of data related to cancer biology requires careful analytical methods to reflect the heterogeneity of cell...
Autores principales: | Mahalanabis, Alaina, Turinsky, Andrei L., Husić, Mia, Christensen, Erik, Luo, Ping, Naidas, Alaine, Brudno, Michael, Pugh, Trevor, Ramani, Arun K., Shooshtari, Parisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677128/ https://www.ncbi.nlm.nih.gov/pubmed/36420149 http://dx.doi.org/10.1016/j.csbj.2022.10.029 |
Ejemplares similares
-
Evaluation of single-cell RNAseq labelling algorithms using cancer datasets
por: Christensen, Erik, et al.
Publicado: (2022) -
TMExplorer: A tumour microenvironment single-cell RNAseq database and search tool
por: Christensen, Erik, et al.
Publicado: (2022) -
CReSCENT: CanceR Single Cell ExpressioN Toolkit
por: Mohanraj, Suluxan, et al.
Publicado: (2020) -
The missing indels: an estimate of indel variation in a human genome and analysis of factors that impede detection
por: Jiang, Yue, et al.
Publicado: (2015) -
Analysis of TERT Isoforms across TCGA, GTEx and CCLE Datasets
por: Subasri, Mathushan, et al.
Publicado: (2021)