Cargando…
Evaluation of Melanoma Thickness with Clinical Close-up and Dermoscopic Images Using a Convolutional Neural Network
Convolutional neural networks (CNNs) have shown promise in discriminating between invasive and in situ melanomas. The aim of this study was to analyse how a CNN model, integrating both clinical close-up and dermoscopic images, performed compared with 6 independent dermatologists. The secondary aim w...
Autores principales: | GILLSTEDT, Martin, MANNIUS, Ludwig, PAOLI, John, DAHLÉN GYLLENCREUTZ, Johan, FOUGELBERG, Julia, JOHANSSON BACKMAN, Eva, PAKKA, Jenna, ZAAR, Oscar, POLESIE, Sam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Publication of Acta Dermato-Venereologica
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677275/ https://www.ncbi.nlm.nih.gov/pubmed/36172695 http://dx.doi.org/10.2340/actadv.v102.2681 |
Ejemplares similares
-
Interobserver Agreement on Dermoscopic Features and their Associations with In Situ and Invasive Cutaneous Melanomas
por: POLESIE, Sam, et al.
Publicado: (2021) -
Discrimination Between Invasive and In Situ Melanomas Using Clinical Close-Up Images and a De Novo Convolutional Neural Network
por: Polesie, Sam, et al.
Publicado: (2021) -
Can Dermoscopy Be Used to Predict if a Melanoma Is In Situ or Invasive?
por: Polesie, Sam, et al.
Publicado: (2021) -
How Does a Convolutional Neural Network Trained to Differentiate between Invasive Melanoma and Melanoma In situ Generalize when Assessing Dysplastic Naevi?
por: GILLSTEDT, Martin, et al.
Publicado: (2023) -
Dermoscopic Findings in Intraepidermal Carcinoma: an Interobserver Agreement Study
por: Fougelberg, Julia, et al.
Publicado: (2023)