Cargando…

Observation of Cation Chromophore Photoisomerization of a Fluorescent Protein Using Millisecond Synchrotron Serial Crystallography and Infrared Vibrational and Visible Spectroscopy

[Image: see text] The chromophores of reversibly switchable fluorescent proteins (rsFPs) undergo photoisomerization of both the trans and cis forms. Concurrent with cis/trans photoisomerisation, rsFPs typically become protonated on the phenolic oxygen resulting in a blue shift of the absorption. A s...

Descripción completa

Detalles Bibliográficos
Autores principales: Baxter, James M., Hutchison, Christopher D. M., Maghlaoui, Karim, Cordon-Preciado, Violeta, Morgan, R. Marc L., Aller, Pierre, Butryn, Agata, Axford, Danny, Horrell, Sam, Owen, Robin L., Storm, Selina L. S., Devenish, Nicholas E., van Thor, Jasper J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677427/
https://www.ncbi.nlm.nih.gov/pubmed/36326150
http://dx.doi.org/10.1021/acs.jpcb.2c06780
_version_ 1784833809199398912
author Baxter, James M.
Hutchison, Christopher D. M.
Maghlaoui, Karim
Cordon-Preciado, Violeta
Morgan, R. Marc L.
Aller, Pierre
Butryn, Agata
Axford, Danny
Horrell, Sam
Owen, Robin L.
Storm, Selina L. S.
Devenish, Nicholas E.
van Thor, Jasper J.
author_facet Baxter, James M.
Hutchison, Christopher D. M.
Maghlaoui, Karim
Cordon-Preciado, Violeta
Morgan, R. Marc L.
Aller, Pierre
Butryn, Agata
Axford, Danny
Horrell, Sam
Owen, Robin L.
Storm, Selina L. S.
Devenish, Nicholas E.
van Thor, Jasper J.
author_sort Baxter, James M.
collection PubMed
description [Image: see text] The chromophores of reversibly switchable fluorescent proteins (rsFPs) undergo photoisomerization of both the trans and cis forms. Concurrent with cis/trans photoisomerisation, rsFPs typically become protonated on the phenolic oxygen resulting in a blue shift of the absorption. A synthetic rsFP referred to as rsEospa, derived from EosFP family, displays the same spectroscopic behavior as the GFP-like rsFP Dronpa at pH 8.4 and involves the photoconversion between nonfluorescent neutral and fluorescent anionic chromophore states. Millisecond time-resolved synchrotron serial crystallography of rsEospa at pH 8.4 shows that photoisomerization is accompanied by rearrangements of the same three residues as seen in Dronpa. However, at pH 5.5 we observe that the OFF state is identified as the cationic chromophore with additional protonation of the imidazolinone nitrogen which is concurrent with a newly formed hydrogen bond with the Glu212 carboxylate side chain. FTIR spectroscopy resolves the characteristic up-shifted carbonyl stretching frequency at 1713 cm(–1) for the cationic species. Electronic spectroscopy furthermore distinguishes the cationic absorption band at 397 nm from the neutral species at pH 8.4 seen at 387 nm. The observation of photoisomerization of the cationic chromophore state demonstrates the conical intersection for the electronic configuration, where previously fluorescence was proposed to be the main decay route for states containing imidazolinone nitrogen protonation. We present the full time-resolved room-temperature X-ray crystallographic, FTIR, and UV/vis assignment and photoconversion modeling of rsEospa.
format Online
Article
Text
id pubmed-9677427
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-96774272022-11-22 Observation of Cation Chromophore Photoisomerization of a Fluorescent Protein Using Millisecond Synchrotron Serial Crystallography and Infrared Vibrational and Visible Spectroscopy Baxter, James M. Hutchison, Christopher D. M. Maghlaoui, Karim Cordon-Preciado, Violeta Morgan, R. Marc L. Aller, Pierre Butryn, Agata Axford, Danny Horrell, Sam Owen, Robin L. Storm, Selina L. S. Devenish, Nicholas E. van Thor, Jasper J. J Phys Chem B [Image: see text] The chromophores of reversibly switchable fluorescent proteins (rsFPs) undergo photoisomerization of both the trans and cis forms. Concurrent with cis/trans photoisomerisation, rsFPs typically become protonated on the phenolic oxygen resulting in a blue shift of the absorption. A synthetic rsFP referred to as rsEospa, derived from EosFP family, displays the same spectroscopic behavior as the GFP-like rsFP Dronpa at pH 8.4 and involves the photoconversion between nonfluorescent neutral and fluorescent anionic chromophore states. Millisecond time-resolved synchrotron serial crystallography of rsEospa at pH 8.4 shows that photoisomerization is accompanied by rearrangements of the same three residues as seen in Dronpa. However, at pH 5.5 we observe that the OFF state is identified as the cationic chromophore with additional protonation of the imidazolinone nitrogen which is concurrent with a newly formed hydrogen bond with the Glu212 carboxylate side chain. FTIR spectroscopy resolves the characteristic up-shifted carbonyl stretching frequency at 1713 cm(–1) for the cationic species. Electronic spectroscopy furthermore distinguishes the cationic absorption band at 397 nm from the neutral species at pH 8.4 seen at 387 nm. The observation of photoisomerization of the cationic chromophore state demonstrates the conical intersection for the electronic configuration, where previously fluorescence was proposed to be the main decay route for states containing imidazolinone nitrogen protonation. We present the full time-resolved room-temperature X-ray crystallographic, FTIR, and UV/vis assignment and photoconversion modeling of rsEospa. American Chemical Society 2022-11-03 2022-11-17 /pmc/articles/PMC9677427/ /pubmed/36326150 http://dx.doi.org/10.1021/acs.jpcb.2c06780 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Baxter, James M.
Hutchison, Christopher D. M.
Maghlaoui, Karim
Cordon-Preciado, Violeta
Morgan, R. Marc L.
Aller, Pierre
Butryn, Agata
Axford, Danny
Horrell, Sam
Owen, Robin L.
Storm, Selina L. S.
Devenish, Nicholas E.
van Thor, Jasper J.
Observation of Cation Chromophore Photoisomerization of a Fluorescent Protein Using Millisecond Synchrotron Serial Crystallography and Infrared Vibrational and Visible Spectroscopy
title Observation of Cation Chromophore Photoisomerization of a Fluorescent Protein Using Millisecond Synchrotron Serial Crystallography and Infrared Vibrational and Visible Spectroscopy
title_full Observation of Cation Chromophore Photoisomerization of a Fluorescent Protein Using Millisecond Synchrotron Serial Crystallography and Infrared Vibrational and Visible Spectroscopy
title_fullStr Observation of Cation Chromophore Photoisomerization of a Fluorescent Protein Using Millisecond Synchrotron Serial Crystallography and Infrared Vibrational and Visible Spectroscopy
title_full_unstemmed Observation of Cation Chromophore Photoisomerization of a Fluorescent Protein Using Millisecond Synchrotron Serial Crystallography and Infrared Vibrational and Visible Spectroscopy
title_short Observation of Cation Chromophore Photoisomerization of a Fluorescent Protein Using Millisecond Synchrotron Serial Crystallography and Infrared Vibrational and Visible Spectroscopy
title_sort observation of cation chromophore photoisomerization of a fluorescent protein using millisecond synchrotron serial crystallography and infrared vibrational and visible spectroscopy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677427/
https://www.ncbi.nlm.nih.gov/pubmed/36326150
http://dx.doi.org/10.1021/acs.jpcb.2c06780
work_keys_str_mv AT baxterjamesm observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy
AT hutchisonchristopherdm observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy
AT maghlaouikarim observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy
AT cordonpreciadovioleta observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy
AT morganrmarcl observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy
AT allerpierre observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy
AT butrynagata observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy
AT axforddanny observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy
AT horrellsam observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy
AT owenrobinl observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy
AT stormselinals observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy
AT devenishnicholase observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy
AT vanthorjasperj observationofcationchromophorephotoisomerizationofafluorescentproteinusingmillisecondsynchrotronserialcrystallographyandinfraredvibrationalandvisiblespectroscopy