Cargando…

EXPERT: transfer learning-enabled context-aware microbial community classification

Microbial community classification enables identification of putative type and source of the microbial community, thus facilitating a better understanding of how the taxonomic and functional structure were developed and maintained. However, previous classification models required a trade-off between...

Descripción completa

Detalles Bibliográficos
Autores principales: Chong, Hui, Zha, Yuguo, Yu, Qingyang, Cheng, Mingyue, Xiong, Guangzhou, Wang, Nan, Huang, Xinhe, Huang, Shijuan, Sun, Chuqing, Wu, Sicheng, Chen, Wei-Hua, Coelho, Luis Pedro, Ning, Kang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677468/
https://www.ncbi.nlm.nih.gov/pubmed/36124759
http://dx.doi.org/10.1093/bib/bbac396
Descripción
Sumario:Microbial community classification enables identification of putative type and source of the microbial community, thus facilitating a better understanding of how the taxonomic and functional structure were developed and maintained. However, previous classification models required a trade-off between speed and accuracy, and faced difficulties to be customized for a variety of contexts, especially less studied contexts. Here, we introduced EXPERT based on transfer learning that enabled the classification model to be adaptable in multiple contexts, with both high efficiency and accuracy. More importantly, we demonstrated that transfer learning can facilitate microbial community classification in diverse contexts, such as classification of microbial communities for multiple diseases with limited number of samples, as well as prediction of the changes in gut microbiome across successive stages of colorectal cancer. Broadly, EXPERT enables accurate and context-aware customized microbial community classification, and potentiates novel microbial knowledge discovery.