Cargando…
Ensembles of knowledge graph embedding models improve predictions for drug discovery
Recent advances in Knowledge Graphs (KGs) and Knowledge Graph Embedding Models (KGEMs) have led to their adoption in a broad range of fields and applications. The current publishing system in machine learning requires newly introduced KGEMs to achieve state-of-the-art performance, surpassing at leas...
Autores principales: | Rivas-Barragan, Daniel, Domingo-Fernández, Daniel, Gadiya, Yojana, Healey, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677479/ https://www.ncbi.nlm.nih.gov/pubmed/36384050 http://dx.doi.org/10.1093/bib/bbac481 |
Ejemplares similares
-
MeSHHeading2vec: a new method for representing MeSH headings as vectors based on graph embedding algorithm
por: Guo, Zhen-Hao, et al.
Publicado: (2020) -
Filter and Wrapper Stacking Ensemble (FWSE): a robust approach for reliable biomarker discovery in high-dimensional omics data
por: Budhraja, Sugam, et al.
Publicado: (2023) -
Causal reasoning over knowledge graphs leveraging drug-perturbed and disease-specific transcriptomic signatures for drug discovery
por: Domingo-Fernández, Daniel, et al.
Publicado: (2022) -
Drug repositioning based on weighted local information augmented graph neural network
por: Meng, Yajie, et al.
Publicado: (2023) -
An end-to-end heterogeneous graph attention network for Mycobacterium tuberculosis drug-resistance prediction
por: Yang, Yang, et al.
Publicado: (2021)