Cargando…
e-TSN: an interactive visual exploration platform for target–disease knowledge mapping from literature
Target discovery and identification processes are driven by the increasing amount of biomedical data. The vast numbers of unstructured texts of biomedical publications provide a rich source of knowledge for drug target discovery research and demand the development of specific algorithms or tools to...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677481/ https://www.ncbi.nlm.nih.gov/pubmed/36347537 http://dx.doi.org/10.1093/bib/bbac465 |
_version_ | 1784833820679208960 |
---|---|
author | Feng, Ziyan Shen, Zihao Li, Honglin Li, Shiliang |
author_facet | Feng, Ziyan Shen, Zihao Li, Honglin Li, Shiliang |
author_sort | Feng, Ziyan |
collection | PubMed |
description | Target discovery and identification processes are driven by the increasing amount of biomedical data. The vast numbers of unstructured texts of biomedical publications provide a rich source of knowledge for drug target discovery research and demand the development of specific algorithms or tools to facilitate finding disease genes and proteins. Text mining is a method that can automatically mine helpful information related to drug target discovery from massive biomedical literature. However, there is a substantial lag between biomedical publications and the subsequent abstraction of information extracted by text mining to databases. The knowledge graph is introduced to integrate heterogeneous biomedical data. Here, we describe e-TSN (Target significance and novelty explorer, http://www.lilab-ecust.cn/etsn/), a knowledge visualization web server integrating the largest database of associations between targets and diseases from the full scientific literature by constructing significance and novelty scoring methods based on bibliometric statistics. The platform aims to visualize target–disease knowledge graphs to assist in prioritizing candidate disease-related proteins. Approved drugs and associated bioactivities for each interested target are also provided to facilitate the visualization of drug–target relationships. In summary, e-TSN is a fast and customizable visualization resource for investigating and analyzing the intricate target–disease networks, which could help researchers understand the mechanisms underlying complex disease phenotypes and improve the drug discovery and development efficiency, especially for the unexpected outbreak of infectious disease pandemics like COVID-19. |
format | Online Article Text |
id | pubmed-9677481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-96774812022-11-21 e-TSN: an interactive visual exploration platform for target–disease knowledge mapping from literature Feng, Ziyan Shen, Zihao Li, Honglin Li, Shiliang Brief Bioinform Problem Solving Protocol Target discovery and identification processes are driven by the increasing amount of biomedical data. The vast numbers of unstructured texts of biomedical publications provide a rich source of knowledge for drug target discovery research and demand the development of specific algorithms or tools to facilitate finding disease genes and proteins. Text mining is a method that can automatically mine helpful information related to drug target discovery from massive biomedical literature. However, there is a substantial lag between biomedical publications and the subsequent abstraction of information extracted by text mining to databases. The knowledge graph is introduced to integrate heterogeneous biomedical data. Here, we describe e-TSN (Target significance and novelty explorer, http://www.lilab-ecust.cn/etsn/), a knowledge visualization web server integrating the largest database of associations between targets and diseases from the full scientific literature by constructing significance and novelty scoring methods based on bibliometric statistics. The platform aims to visualize target–disease knowledge graphs to assist in prioritizing candidate disease-related proteins. Approved drugs and associated bioactivities for each interested target are also provided to facilitate the visualization of drug–target relationships. In summary, e-TSN is a fast and customizable visualization resource for investigating and analyzing the intricate target–disease networks, which could help researchers understand the mechanisms underlying complex disease phenotypes and improve the drug discovery and development efficiency, especially for the unexpected outbreak of infectious disease pandemics like COVID-19. Oxford University Press 2022-11-08 /pmc/articles/PMC9677481/ /pubmed/36347537 http://dx.doi.org/10.1093/bib/bbac465 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Problem Solving Protocol Feng, Ziyan Shen, Zihao Li, Honglin Li, Shiliang e-TSN: an interactive visual exploration platform for target–disease knowledge mapping from literature |
title | e-TSN: an interactive visual exploration platform for target–disease knowledge mapping from literature |
title_full | e-TSN: an interactive visual exploration platform for target–disease knowledge mapping from literature |
title_fullStr | e-TSN: an interactive visual exploration platform for target–disease knowledge mapping from literature |
title_full_unstemmed | e-TSN: an interactive visual exploration platform for target–disease knowledge mapping from literature |
title_short | e-TSN: an interactive visual exploration platform for target–disease knowledge mapping from literature |
title_sort | e-tsn: an interactive visual exploration platform for target–disease knowledge mapping from literature |
topic | Problem Solving Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677481/ https://www.ncbi.nlm.nih.gov/pubmed/36347537 http://dx.doi.org/10.1093/bib/bbac465 |
work_keys_str_mv | AT fengziyan etsnaninteractivevisualexplorationplatformfortargetdiseaseknowledgemappingfromliterature AT shenzihao etsnaninteractivevisualexplorationplatformfortargetdiseaseknowledgemappingfromliterature AT lihonglin etsnaninteractivevisualexplorationplatformfortargetdiseaseknowledgemappingfromliterature AT lishiliang etsnaninteractivevisualexplorationplatformfortargetdiseaseknowledgemappingfromliterature |