Cargando…
Machine learning alternative to systems biology should not solely depend on data
In recent years, artificial intelligence (AI)/machine learning has emerged as a plausible alternative to systems biology for the elucidation of biological phenomena and in attaining specified design objective in synthetic biology. Although considered highly disruptive with numerous notable successes...
Autores principales: | Yeo, Hock Chuan, Selvarajoo, Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677488/ https://www.ncbi.nlm.nih.gov/pubmed/36184188 http://dx.doi.org/10.1093/bib/bbac436 |
Ejemplares similares
-
Who Should Do Data Ethics?
por: Wylie, Caitlin D.
Publicado: (2020) -
Real-World Synthetic Biology: Is It Founded on an Engineering Approach, and Should It Be?
por: Davies, Jamie A.
Publicado: (2019) -
Perspective: Multiomics and Machine Learning Help Unleash the Alternative Food Potential of Microalgae
por: Helmy, Mohamed, et al.
Publicado: (2022) -
Machine learning enthusiasts should stick to the facts. Response to Morrison et al. (2022)
por: Biedermann, Alex
Publicado: (2022) -
Why (and how) we should publish negative data
por: Nimpf, Simon, et al.
Publicado: (2019)