Cargando…
_version_ 1784833835082448896
author De Lorenzis, Enrico
Parente, Paolo
Natalello, Gerlando
Soldati, Salvatore
Bosello, Silvia Laura
Barbara, Andrea
Sorge, Chiara
Axelrod, Svetlana
Verardi, Lucrezia
Cerasuolo, Pier Giacomo
Peluso, Giusy
Gemma, Antonella
Davoli, Marina
Biliotti, Donatella
Bruzzese, Vincenzo
Goletti, Mauro
Di Martino, Mirko
D’Agostino, Maria Antonietta
author_facet De Lorenzis, Enrico
Parente, Paolo
Natalello, Gerlando
Soldati, Salvatore
Bosello, Silvia Laura
Barbara, Andrea
Sorge, Chiara
Axelrod, Svetlana
Verardi, Lucrezia
Cerasuolo, Pier Giacomo
Peluso, Giusy
Gemma, Antonella
Davoli, Marina
Biliotti, Donatella
Bruzzese, Vincenzo
Goletti, Mauro
Di Martino, Mirko
D’Agostino, Maria Antonietta
author_sort De Lorenzis, Enrico
collection PubMed
description
format Online
Article
Text
id pubmed-9677569
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Société française de rhumatologie. Published by Elsevier Masson SAS.
record_format MEDLINE/PubMed
spelling pubmed-96775692022-11-21 Chronic related group classification system as a new public health tool to predict risk and outcome of COVID-19 in patients with systemic rheumatic diseases: A population-based study of more than forty thousand patients De Lorenzis, Enrico Parente, Paolo Natalello, Gerlando Soldati, Salvatore Bosello, Silvia Laura Barbara, Andrea Sorge, Chiara Axelrod, Svetlana Verardi, Lucrezia Cerasuolo, Pier Giacomo Peluso, Giusy Gemma, Antonella Davoli, Marina Biliotti, Donatella Bruzzese, Vincenzo Goletti, Mauro Di Martino, Mirko D’Agostino, Maria Antonietta Joint Bone Spine Letter to the Editor Société française de rhumatologie. Published by Elsevier Masson SAS. 2023-03 2022-11-21 /pmc/articles/PMC9677569/ /pubmed/36423782 http://dx.doi.org/10.1016/j.jbspin.2022.105497 Text en © 2022 Société française de rhumatologie. Published by Elsevier Masson SAS. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Letter to the Editor
De Lorenzis, Enrico
Parente, Paolo
Natalello, Gerlando
Soldati, Salvatore
Bosello, Silvia Laura
Barbara, Andrea
Sorge, Chiara
Axelrod, Svetlana
Verardi, Lucrezia
Cerasuolo, Pier Giacomo
Peluso, Giusy
Gemma, Antonella
Davoli, Marina
Biliotti, Donatella
Bruzzese, Vincenzo
Goletti, Mauro
Di Martino, Mirko
D’Agostino, Maria Antonietta
Chronic related group classification system as a new public health tool to predict risk and outcome of COVID-19 in patients with systemic rheumatic diseases: A population-based study of more than forty thousand patients
title Chronic related group classification system as a new public health tool to predict risk and outcome of COVID-19 in patients with systemic rheumatic diseases: A population-based study of more than forty thousand patients
title_full Chronic related group classification system as a new public health tool to predict risk and outcome of COVID-19 in patients with systemic rheumatic diseases: A population-based study of more than forty thousand patients
title_fullStr Chronic related group classification system as a new public health tool to predict risk and outcome of COVID-19 in patients with systemic rheumatic diseases: A population-based study of more than forty thousand patients
title_full_unstemmed Chronic related group classification system as a new public health tool to predict risk and outcome of COVID-19 in patients with systemic rheumatic diseases: A population-based study of more than forty thousand patients
title_short Chronic related group classification system as a new public health tool to predict risk and outcome of COVID-19 in patients with systemic rheumatic diseases: A population-based study of more than forty thousand patients
title_sort chronic related group classification system as a new public health tool to predict risk and outcome of covid-19 in patients with systemic rheumatic diseases: a population-based study of more than forty thousand patients
topic Letter to the Editor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677569/
https://www.ncbi.nlm.nih.gov/pubmed/36423782
http://dx.doi.org/10.1016/j.jbspin.2022.105497
work_keys_str_mv AT delorenzisenrico chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT parentepaolo chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT natalellogerlando chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT soldatisalvatore chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT bosellosilvialaura chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT barbaraandrea chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT sorgechiara chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT axelrodsvetlana chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT verardilucrezia chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT cerasuolopiergiacomo chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT pelusogiusy chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT gemmaantonella chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT davolimarina chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT biliottidonatella chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT bruzzesevincenzo chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT golettimauro chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT dimartinomirko chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients
AT dagostinomariaantonietta chronicrelatedgroupclassificationsystemasanewpublichealthtooltopredictriskandoutcomeofcovid19inpatientswithsystemicrheumaticdiseasesapopulationbasedstudyofmorethanfortythousandpatients