Cargando…
Effects analysis of reward functions on reinforcement learning for traffic signal control
The increasing traffic demand in urban areas frequently causes traffic congestion, which can be managed only through intelligent traffic signal controls. Although many recent studies have focused on reinforcement learning for traffic signal control (RL-TSC), most have focused on improving performanc...
Autores principales: | Lee, Hyosun, Han, Yohee, Kim, Youngchan, Kim, Yong Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678263/ https://www.ncbi.nlm.nih.gov/pubmed/36409713 http://dx.doi.org/10.1371/journal.pone.0277813 |
Ejemplares similares
-
Biased Pressure: Cyclic Reinforcement Learning Model for Intelligent Traffic Signal Control
por: Ibrokhimov, Bunyodbek, et al.
Publicado: (2022) -
Deep Reinforcement Learning for Traffic Signal Control Model and Adaptation Study
por: Tan, Jiyuan, et al.
Publicado: (2022) -
Traffic Signal Control Using Hybrid Action Space Deep Reinforcement Learning
por: Bouktif, Salah, et al.
Publicado: (2021) -
Quantifying the impact of non-stationarity in reinforcement learning-based traffic signal control
por: Alegre, Lucas N., et al.
Publicado: (2021) -
A scalable approach to optimize traffic signal control with federated reinforcement learning
por: Bao, Jingjing, et al.
Publicado: (2023)