Cargando…
COVID-19 masks increase the influence of face recognition algorithm decisions on human decisions in unfamiliar face matching
Face masks, recently adopted to reduce the spread of COVID-19, have had the unintended consequence of increasing the difficulty of face recognition. In security applications, face recognition algorithms are used to identify individuals and present results for human review. This combination of human...
Autores principales: | Barragan, Daniela, Howard, John J., Rabbitt, Laura R., Sirotin, Yevgeniy B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678274/ https://www.ncbi.nlm.nih.gov/pubmed/36409731 http://dx.doi.org/10.1371/journal.pone.0277625 |
Ejemplares similares
-
Human-algorithm teaming in face recognition: How algorithm outcomes cognitively bias human decision-making
por: Howard, John J., et al.
Publicado: (2020) -
Surgical face masks impair human face matching performance for familiar and unfamiliar faces
por: Carragher, Daniel J., et al.
Publicado: (2020) -
Unfamiliar face matching ability predicts the slope of face learning
por: Baker, Kristen A., et al.
Publicado: (2023) -
Unfamiliar face matching with photographs of infants and children
por: Kramer, Robin S.S., et al.
Publicado: (2018) -
The pairs training effect in unfamiliar face matching
por: Ritchie, Kay L., et al.
Publicado: (2022)