Cargando…
SCGG: A deep structure-conditioned graph generative model
Deep learning-based graph generation approaches have remarkable capacities for graph data modeling, allowing them to solve a wide range of real-world problems. Making these methods able to consider different conditions during the generation procedure even increases their effectiveness by empowering...
Autores principales: | Faez, Faezeh, Hashemi Dijujin, Negin, Soleymani Baghshah, Mahdieh, Rabiee, Hamid R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678307/ https://www.ncbi.nlm.nih.gov/pubmed/36409705 http://dx.doi.org/10.1371/journal.pone.0277887 |
Ejemplares similares
-
Transformer-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech
por: Roshanzamir, Alireza, et al.
Publicado: (2021) -
Optical pattern generator for efficient bio-data encoding in a photonic sequence comparison architecture
por: Akbari Rokn Abadi, Saeedeh, et al.
Publicado: (2021) -
PFP-WGAN: Protein function prediction by discovering Gene Ontology term correlations with generative adversarial networks
por: Seyyedsalehi, Seyyede Fatemeh, et al.
Publicado: (2021) -
DeepGenePrior: A deep learning model for prioritizing genes affected by copy number variants
por: Rahaie, Zahra, et al.
Publicado: (2023) -
Network-principled deep generative models for designing drug combinations as graph sets
por: Karimi, Mostafa, et al.
Publicado: (2020)