Cargando…

Exploration of potential targets and mechanisms of Naringenin in treating autism spectrum disorder via network pharmacology and molecular docking

Naringenin (NR) is a kind of flavonoid which plays a great role in the treatment of autism spectrum disorder (ASD). However, the underlying mechanism of NR in treating ASD still remains unclear. This study used network pharmacology and molecular docking to examine the potential targets and pharmacol...

Descripción completa

Detalles Bibliográficos
Autores principales: Gai, Jialin, Xing, Jinxiao, Wang, Yangyang, Lei, Junfang, Zhang, Chengdong, Zhang, Jinfei, Tang, Jiqin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678605/
https://www.ncbi.nlm.nih.gov/pubmed/36401485
http://dx.doi.org/10.1097/MD.0000000000031787
_version_ 1784834024502460416
author Gai, Jialin
Xing, Jinxiao
Wang, Yangyang
Lei, Junfang
Zhang, Chengdong
Zhang, Jinfei
Tang, Jiqin
author_facet Gai, Jialin
Xing, Jinxiao
Wang, Yangyang
Lei, Junfang
Zhang, Chengdong
Zhang, Jinfei
Tang, Jiqin
author_sort Gai, Jialin
collection PubMed
description Naringenin (NR) is a kind of flavonoid which plays a great role in the treatment of autism spectrum disorder (ASD). However, the underlying mechanism of NR in treating ASD still remains unclear. This study used network pharmacology and molecular docking to examine the potential targets and pharmacological mechanism of NR on ASD. Targets related to NR were screened from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), Encyclopedia of Traditional Chinese Medicine Database (ETCM), Traditional Chinese Medicine Integrated Database (TCMID), PharmaMapper database, and targets related to ASD were screened from Online Mendelian Inheritance In Man (OMIM), Disgenet, GeneCards, Therapeutic Target Database (TTD), Drugbank, and ETCM. Screened of the intersected gene targets. Then, we used the protein–protein interaction (PPI) networks to construct a PPI network and used Network Analyzer plug-in to perform topological analysis to screen out the core target. We used Metascape platform to perform gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and used Chem draw, Pymol, AutoDock 1.5.6 software for molecular docking verification with core targets. A total of 149 targets of NR and 1594 potential targets of ASD were screened, and 43 intersected targets and 8 key targets were obtained and screened. A total of 176 GO items were obtained by GO enrichment analysis (P < .05), 153 entries on biological process (BP), 12 entries on BP and 11entries on cell composition (CC) were included. A total of 100 signaling pathways were obtained by KEGG pathway enrichment screening (P < .05).The pathways that are closely related to the pathogenesis of ASD are estrogen signaling, thyroid hormone signaling pathway, prolactin signaling pathway, and endocrine resistance pathway. Molecular docking results showed that NR had the best docking activity with the core target CASP3, and had good binding ability with AKT1, ESR1, ACTB and MAPK3. Taken together, our findings support that NR exerts therapeutic effects on ASD with multi-target, and multi-pathway characteristics, which provides a preliminary theoretical basis for clinical trials. The mechanism of anti-oxidative stress response, anti-apoptosis, regulation of cell growth and metabolism, anti-inflammatory, balance hormone levels may be important for the therapeutic effect.
format Online
Article
Text
id pubmed-9678605
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-96786052022-11-22 Exploration of potential targets and mechanisms of Naringenin in treating autism spectrum disorder via network pharmacology and molecular docking Gai, Jialin Xing, Jinxiao Wang, Yangyang Lei, Junfang Zhang, Chengdong Zhang, Jinfei Tang, Jiqin Medicine (Baltimore) 3800 Naringenin (NR) is a kind of flavonoid which plays a great role in the treatment of autism spectrum disorder (ASD). However, the underlying mechanism of NR in treating ASD still remains unclear. This study used network pharmacology and molecular docking to examine the potential targets and pharmacological mechanism of NR on ASD. Targets related to NR were screened from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), Encyclopedia of Traditional Chinese Medicine Database (ETCM), Traditional Chinese Medicine Integrated Database (TCMID), PharmaMapper database, and targets related to ASD were screened from Online Mendelian Inheritance In Man (OMIM), Disgenet, GeneCards, Therapeutic Target Database (TTD), Drugbank, and ETCM. Screened of the intersected gene targets. Then, we used the protein–protein interaction (PPI) networks to construct a PPI network and used Network Analyzer plug-in to perform topological analysis to screen out the core target. We used Metascape platform to perform gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and used Chem draw, Pymol, AutoDock 1.5.6 software for molecular docking verification with core targets. A total of 149 targets of NR and 1594 potential targets of ASD were screened, and 43 intersected targets and 8 key targets were obtained and screened. A total of 176 GO items were obtained by GO enrichment analysis (P < .05), 153 entries on biological process (BP), 12 entries on BP and 11entries on cell composition (CC) were included. A total of 100 signaling pathways were obtained by KEGG pathway enrichment screening (P < .05).The pathways that are closely related to the pathogenesis of ASD are estrogen signaling, thyroid hormone signaling pathway, prolactin signaling pathway, and endocrine resistance pathway. Molecular docking results showed that NR had the best docking activity with the core target CASP3, and had good binding ability with AKT1, ESR1, ACTB and MAPK3. Taken together, our findings support that NR exerts therapeutic effects on ASD with multi-target, and multi-pathway characteristics, which provides a preliminary theoretical basis for clinical trials. The mechanism of anti-oxidative stress response, anti-apoptosis, regulation of cell growth and metabolism, anti-inflammatory, balance hormone levels may be important for the therapeutic effect. Lippincott Williams & Wilkins 2022-11-18 /pmc/articles/PMC9678605/ /pubmed/36401485 http://dx.doi.org/10.1097/MD.0000000000031787 Text en Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY) (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle 3800
Gai, Jialin
Xing, Jinxiao
Wang, Yangyang
Lei, Junfang
Zhang, Chengdong
Zhang, Jinfei
Tang, Jiqin
Exploration of potential targets and mechanisms of Naringenin in treating autism spectrum disorder via network pharmacology and molecular docking
title Exploration of potential targets and mechanisms of Naringenin in treating autism spectrum disorder via network pharmacology and molecular docking
title_full Exploration of potential targets and mechanisms of Naringenin in treating autism spectrum disorder via network pharmacology and molecular docking
title_fullStr Exploration of potential targets and mechanisms of Naringenin in treating autism spectrum disorder via network pharmacology and molecular docking
title_full_unstemmed Exploration of potential targets and mechanisms of Naringenin in treating autism spectrum disorder via network pharmacology and molecular docking
title_short Exploration of potential targets and mechanisms of Naringenin in treating autism spectrum disorder via network pharmacology and molecular docking
title_sort exploration of potential targets and mechanisms of naringenin in treating autism spectrum disorder via network pharmacology and molecular docking
topic 3800
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678605/
https://www.ncbi.nlm.nih.gov/pubmed/36401485
http://dx.doi.org/10.1097/MD.0000000000031787
work_keys_str_mv AT gaijialin explorationofpotentialtargetsandmechanismsofnaringeninintreatingautismspectrumdisordervianetworkpharmacologyandmoleculardocking
AT xingjinxiao explorationofpotentialtargetsandmechanismsofnaringeninintreatingautismspectrumdisordervianetworkpharmacologyandmoleculardocking
AT wangyangyang explorationofpotentialtargetsandmechanismsofnaringeninintreatingautismspectrumdisordervianetworkpharmacologyandmoleculardocking
AT leijunfang explorationofpotentialtargetsandmechanismsofnaringeninintreatingautismspectrumdisordervianetworkpharmacologyandmoleculardocking
AT zhangchengdong explorationofpotentialtargetsandmechanismsofnaringeninintreatingautismspectrumdisordervianetworkpharmacologyandmoleculardocking
AT zhangjinfei explorationofpotentialtargetsandmechanismsofnaringeninintreatingautismspectrumdisordervianetworkpharmacologyandmoleculardocking
AT tangjiqin explorationofpotentialtargetsandmechanismsofnaringeninintreatingautismspectrumdisordervianetworkpharmacologyandmoleculardocking