Cargando…
Baicalin suppresses the migration and invasion of breast cancer cells via the TGF-β/lncRNA-MALAT1/miR-200c signaling pathway
Metastasis is the major cause of death and failure of cancer chemotherapy in patients with breast cancer (BC). Activation of TGF-β/lncRNA-MALAT1/miR-200c has been reported to play an essential role during the metastasis of BC cells. The present study aimed to validate the suppression of BC-cell migr...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678613/ https://www.ncbi.nlm.nih.gov/pubmed/36401368 http://dx.doi.org/10.1097/MD.0000000000029328 |
Sumario: | Metastasis is the major cause of death and failure of cancer chemotherapy in patients with breast cancer (BC). Activation of TGF-β/lncRNA-MALAT1/miR-200c has been reported to play an essential role during the metastasis of BC cells. The present study aimed to validate the suppression of BC-cell migration and invasion by baicalin and explore its regulatory effects on the TGF-β/lncRNA-MALAT1/miR-200c signaling pathway. We found that baicalin treatment inhibited cell viability and migration and invasion. Mechanistically, baicalin treatment significantly downregulated the expression of TGF-β, ZEB1, and N-cadherin and upregulated E-cadherin on both mRNA and protein levels. Additionally, baicalin treatment significantly downregulated the expression of lncRNA-MALAT1 and upregulated that of miR-200c. Collectively, baicalin significantly suppresses cell viability, migration, and invasion of BC cells possibly by regulating the TGF-β/lncRNA-MALAT1/miR-200c pathway. |
---|