Cargando…
Quantitative landscapes reveal trajectories of cell-state transitions associated with drug resistance in melanoma
Drug resistance and tumor relapse in patients with melanoma is attributed to a combination of genetic and non-genetic mechanisms. Dedifferentiation, a common mechanism of non-genetic resistance in melanoma is characterized by the loss of melanocytic markers. While various molecular attributes of de-...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678737/ https://www.ncbi.nlm.nih.gov/pubmed/36425754 http://dx.doi.org/10.1016/j.isci.2022.105499 |
_version_ | 1784834055140802560 |
---|---|
author | Pillai, Maalavika Chen, Zihao Jolly, Mohit Kumar Li, Chunhe |
author_facet | Pillai, Maalavika Chen, Zihao Jolly, Mohit Kumar Li, Chunhe |
author_sort | Pillai, Maalavika |
collection | PubMed |
description | Drug resistance and tumor relapse in patients with melanoma is attributed to a combination of genetic and non-genetic mechanisms. Dedifferentiation, a common mechanism of non-genetic resistance in melanoma is characterized by the loss of melanocytic markers. While various molecular attributes of de-differentiation have been identified, the transition dynamics remain poorly understood. Here, we construct cell-state transition landscapes, to quantify the stochastic dynamics driving phenotypic switching in melanoma based on its underlying regulatory network. These landscapes reveal the existence of multiple alternative paths to resistance—de-differentiation and transition to a hyper-pigmented phenotype. Finally, by visualizing the changes in the landscape during in silico molecular perturbations, we identify combinatorial strategies that can lead to the most optimal outcome—a landscape with the minimum occupancy of the two drug-resistant states. Therefore, we present these landscapes as platforms to screen possible therapeutic interventions in terms of their ability to lead to the most favorable patient outcomes. |
format | Online Article Text |
id | pubmed-9678737 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96787372022-11-23 Quantitative landscapes reveal trajectories of cell-state transitions associated with drug resistance in melanoma Pillai, Maalavika Chen, Zihao Jolly, Mohit Kumar Li, Chunhe iScience Article Drug resistance and tumor relapse in patients with melanoma is attributed to a combination of genetic and non-genetic mechanisms. Dedifferentiation, a common mechanism of non-genetic resistance in melanoma is characterized by the loss of melanocytic markers. While various molecular attributes of de-differentiation have been identified, the transition dynamics remain poorly understood. Here, we construct cell-state transition landscapes, to quantify the stochastic dynamics driving phenotypic switching in melanoma based on its underlying regulatory network. These landscapes reveal the existence of multiple alternative paths to resistance—de-differentiation and transition to a hyper-pigmented phenotype. Finally, by visualizing the changes in the landscape during in silico molecular perturbations, we identify combinatorial strategies that can lead to the most optimal outcome—a landscape with the minimum occupancy of the two drug-resistant states. Therefore, we present these landscapes as platforms to screen possible therapeutic interventions in terms of their ability to lead to the most favorable patient outcomes. Elsevier 2022-11-04 /pmc/articles/PMC9678737/ /pubmed/36425754 http://dx.doi.org/10.1016/j.isci.2022.105499 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Pillai, Maalavika Chen, Zihao Jolly, Mohit Kumar Li, Chunhe Quantitative landscapes reveal trajectories of cell-state transitions associated with drug resistance in melanoma |
title | Quantitative landscapes reveal trajectories of cell-state transitions associated with drug resistance in melanoma |
title_full | Quantitative landscapes reveal trajectories of cell-state transitions associated with drug resistance in melanoma |
title_fullStr | Quantitative landscapes reveal trajectories of cell-state transitions associated with drug resistance in melanoma |
title_full_unstemmed | Quantitative landscapes reveal trajectories of cell-state transitions associated with drug resistance in melanoma |
title_short | Quantitative landscapes reveal trajectories of cell-state transitions associated with drug resistance in melanoma |
title_sort | quantitative landscapes reveal trajectories of cell-state transitions associated with drug resistance in melanoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678737/ https://www.ncbi.nlm.nih.gov/pubmed/36425754 http://dx.doi.org/10.1016/j.isci.2022.105499 |
work_keys_str_mv | AT pillaimaalavika quantitativelandscapesrevealtrajectoriesofcellstatetransitionsassociatedwithdrugresistanceinmelanoma AT chenzihao quantitativelandscapesrevealtrajectoriesofcellstatetransitionsassociatedwithdrugresistanceinmelanoma AT jollymohitkumar quantitativelandscapesrevealtrajectoriesofcellstatetransitionsassociatedwithdrugresistanceinmelanoma AT lichunhe quantitativelandscapesrevealtrajectoriesofcellstatetransitionsassociatedwithdrugresistanceinmelanoma |