Cargando…
Deep learning for protein secondary structure prediction: Pre and post-AlphaFold
This paper aims to provide a comprehensive review of the trends and challenges of deep neural networks for protein secondary structure prediction (PSSP). In recent years, deep neural networks have become the primary method for protein secondary structure prediction. Previous studies showed that deep...
Autores principales: | Ismi, Dewi Pramudi, Pulungan, Reza, Afiahayati |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678802/ https://www.ncbi.nlm.nih.gov/pubmed/36420164 http://dx.doi.org/10.1016/j.csbj.2022.11.012 |
Ejemplares similares
-
AlphaFold and the future of structural biology
por: Read, Randy J., et al.
Publicado: (2023) -
Highly accurate protein structure prediction with AlphaFold
por: Jumper, John, et al.
Publicado: (2021) -
Benchmarking the Accuracy of AlphaFold 2 in Loop Structure Prediction
por: Stevens, Amy O., et al.
Publicado: (2022) -
Cyclic peptide structure prediction and design using AlphaFold
por: Rettie, Stephen A., et al.
Publicado: (2023) -
Accelerating crystal structure determination with iterative AlphaFold prediction
por: Terwilliger, Thomas C., et al.
Publicado: (2023)