Cargando…
A novel single robot image shadow detection method based on convolutional block attention module and unsupervised learning network
Shadow detection plays a very important role in image processing. Although many algorithms have been proposed in different environments, it is still a challenging task to detect shadows in natural scenes. In this paper, we propose a convolutional block attention module (CBAM) and unsupervised domain...
Autores principales: | Zhang, Jun, Liu, Junjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679151/ https://www.ncbi.nlm.nih.gov/pubmed/36425927 http://dx.doi.org/10.3389/fnbot.2022.1059497 |
Ejemplares similares
-
Object-stable unsupervised dual contrastive learning image-to-image translation with query-selected attention and convolutional block attention module
por: Oh, Yunseok, et al.
Publicado: (2023) -
ADVIAN: Alzheimer's Disease VGG-Inspired Attention Network Based on Convolutional Block Attention Module and Multiple Way Data Augmentation
por: Wang, Shui-Hua, et al.
Publicado: (2021) -
EEG-based detection of the locus of auditory attention with convolutional neural networks
por: Vandecappelle, Servaas, et al.
Publicado: (2021) -
Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks
por: Allred, Jason M., et al.
Publicado: (2020) -
Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor
por: Kim, Dong Seop, et al.
Publicado: (2018)