Cargando…

Steady, Aim, Fire! Optimized Instructions Enhance Performance and Reduce Intra-Trial Variability in a Shooting Task

The present study examined the influence of the individual and sequential combination of the key components of OPTIMAL (Optimizing Performance Through Intrinsic Motivation and Attention for Learning) theory (i.e., enhanced expectancies, autonomy support, and external focus), on the performance of a...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdollahipour, Reza, Land, William M., Bizovská, Lucia, Klein, Tomáš, Valtr, Ludvík, Janura, Miroslav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sciendo 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679192/
https://www.ncbi.nlm.nih.gov/pubmed/36457473
http://dx.doi.org/10.2478/hukin-2022-000077
Descripción
Sumario:The present study examined the influence of the individual and sequential combination of the key components of OPTIMAL (Optimizing Performance Through Intrinsic Motivation and Attention for Learning) theory (i.e., enhanced expectancies, autonomy support, and external focus), on the performance of a laser-pistol shooting task. In addition to shooting accuracy, intra-trial variability in the sway of forearm/pistol motion prior to movement execution (pulling the trigger) was the primary variable of interest. In a between-within-subject design, thirty-six participants (Mage = 21.27 ± 1.75 years) were randomized into either a control or an optimized group. Enhanced expectancies, autonomy support, and an external focus were implemented via sequential blocks of trials for participants in the optimized group. Participants in the control group performed all trials under “neutral” conditions. Our results showed that motor performance was enhanced for participants in the optimized group compared to those in the control group. Moreover, greater reductions in forearm sway leading up to the trigger pull were observed for the optimized group compared to the control group. These findings suggest higher movement effectiveness and efficiency, potentially through better attunement to task and environmental constraints, when implementing optimized instructions in a self-initiated fine motor task.