Cargando…

The Large and Strong Vortex Around the Trunk and Behind the Swimmer is Associated with Great Performance in Underwater Undulatory Swimming

Swimmers can produce horizontal body velocity by generating and shedding vortices around their body during underwater undulatory swimming (UUS). It has been hypothesized that the horizontal shedding velocity, area and circulation of the vortex around the swimmer’s body are associated with UUS perfor...

Descripción completa

Detalles Bibliográficos
Autores principales: Tanaka, Takahiro, Hashizume, Satoru, Kurihara, Toshiyuki, Isaka, Tadao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sciendo 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679196/
https://www.ncbi.nlm.nih.gov/pubmed/36457469
http://dx.doi.org/10.2478/hukin-2022-0087
Descripción
Sumario:Swimmers can produce horizontal body velocity by generating and shedding vortices around their body during underwater undulatory swimming (UUS). It has been hypothesized that the horizontal shedding velocity, area and circulation of the vortex around the swimmer’s body are associated with UUS performance. The purpose of this study was to investigate whether the shedding velocity, area and circulation of vortices around swimmers’ bodies are correlated with the horizontal body velocity during UUS. Computational fluid dynamics (CFD) was conducted to obtain the vortex structure during UUS in nine male swimmers. Morphological and kinematic data of each subject were obtained and used to reconstruct the UUS movement on CFD. The horizontal velocity of the center of vorticity, the area and circulation of vortices around the ventral side of the trunk, dorsal side of shoulder and waist, and behind the swimmer were determined from the simulation results. Positive correlations were found between the vortex area and circulation around the ventral side of the trunk (area r = 0.938, p < 0.05; circulation r = 0.915, p < 0.05) and behind the swimmer (area r = 0.738, p < 0.05; circulation r = -0.680, p < 0.05), and the horizontal body velocity. The horizontal shedding velocity of the center of vorticity of the vortices around the swimmer’s body was not significantly correlated with the horizontal body velocity. These results suggest that the generation of a large and strong vortex around the trunk and behind the swimmer is associated with great UUS performance.