Cargando…

Reprocessing Zamak laryngoscope blades into new instrument parts; an ‘all-in-one’ experimental study

INTRODUCTION: Disposable instruments in healthcare have led to a significant increase of medical waste. The aim of this study is to validate the recycling of disposable Zamak laryngoscope blades into new medical components by using a new ‘all-in-one’ affordable reprocessing setup as alternative for...

Descripción completa

Detalles Bibliográficos
Autores principales: van Straten, Bart, Tantuo, Brian, Dankelman, Jenny, Sperna Weiland, Nicolaas H., Boersma, Bendiks Jan, Horeman, Tim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679383/
https://www.ncbi.nlm.nih.gov/pubmed/36425420
http://dx.doi.org/10.1016/j.heliyon.2022.e11711
_version_ 1784834177456144384
author van Straten, Bart
Tantuo, Brian
Dankelman, Jenny
Sperna Weiland, Nicolaas H.
Boersma, Bendiks Jan
Horeman, Tim
author_facet van Straten, Bart
Tantuo, Brian
Dankelman, Jenny
Sperna Weiland, Nicolaas H.
Boersma, Bendiks Jan
Horeman, Tim
author_sort van Straten, Bart
collection PubMed
description INTRODUCTION: Disposable instruments in healthcare have led to a significant increase of medical waste. The aim of this study is to validate the recycling of disposable Zamak laryngoscope blades into new medical components by using a new ‘all-in-one’ affordable reprocessing setup as alternative for die-casting. METHODS: A n “all-in-one” casting set-up was designed and built. Laryngoscope blades, recovered from two hospitals, were disinfected, melted and cast into dog-bones and into new instrument parts. The quality of the cast material was evaluated using X-ray fluorescence spectrometry. The mechanical properties were obtained by assessing the Ultimate Tensile Strength (UTS) and tensile tests. RESULTS: A recovery of 93 % Zamak was obtained using a melting temperature of 420 °C for 3 h. The XRF Spectro data showed higher Zinc and silicon concentrations when compared with Virgin Zamak. The dog-bones tests resulted in an average UTS, Yield Strength (YS) and Young's Modulus (YM) of 236 ± 61 (MPa), 70 ± 43 and 9 ± 3, respectively, representing 82 %, 103 % and 64 % of the UTS, YS and YM of standard Zamak. Functional instrument parts with extensions and inner chambers were cast with a maximal shrinkage percentage of 1 ± 1 %. DISCUSSION: This study demonstrates that the created “all-in-one” reprocessing method can process contaminated disposable Zamak laryngoscope blades into new raw base material and new instrument parts. Although material and surface properties can deteriorate, reprocessed Zamak still has sufficient mechanical properties and can be used to cast complex parts with sufficient dimensional tolerances and minimal shrinkage. CONCLUSION: A micro reprocessing method was designed and used to turn disposed laryngoscope blades into new basis material and semi-finished components. Follow up studies are needed to scale and optimize this process towards a functional alternative for die casting. It should be further investigated how this process can contribute to further medical waste reduction and a circular healthcare economy.
format Online
Article
Text
id pubmed-9679383
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-96793832022-11-23 Reprocessing Zamak laryngoscope blades into new instrument parts; an ‘all-in-one’ experimental study van Straten, Bart Tantuo, Brian Dankelman, Jenny Sperna Weiland, Nicolaas H. Boersma, Bendiks Jan Horeman, Tim Heliyon Research Article INTRODUCTION: Disposable instruments in healthcare have led to a significant increase of medical waste. The aim of this study is to validate the recycling of disposable Zamak laryngoscope blades into new medical components by using a new ‘all-in-one’ affordable reprocessing setup as alternative for die-casting. METHODS: A n “all-in-one” casting set-up was designed and built. Laryngoscope blades, recovered from two hospitals, were disinfected, melted and cast into dog-bones and into new instrument parts. The quality of the cast material was evaluated using X-ray fluorescence spectrometry. The mechanical properties were obtained by assessing the Ultimate Tensile Strength (UTS) and tensile tests. RESULTS: A recovery of 93 % Zamak was obtained using a melting temperature of 420 °C for 3 h. The XRF Spectro data showed higher Zinc and silicon concentrations when compared with Virgin Zamak. The dog-bones tests resulted in an average UTS, Yield Strength (YS) and Young's Modulus (YM) of 236 ± 61 (MPa), 70 ± 43 and 9 ± 3, respectively, representing 82 %, 103 % and 64 % of the UTS, YS and YM of standard Zamak. Functional instrument parts with extensions and inner chambers were cast with a maximal shrinkage percentage of 1 ± 1 %. DISCUSSION: This study demonstrates that the created “all-in-one” reprocessing method can process contaminated disposable Zamak laryngoscope blades into new raw base material and new instrument parts. Although material and surface properties can deteriorate, reprocessed Zamak still has sufficient mechanical properties and can be used to cast complex parts with sufficient dimensional tolerances and minimal shrinkage. CONCLUSION: A micro reprocessing method was designed and used to turn disposed laryngoscope blades into new basis material and semi-finished components. Follow up studies are needed to scale and optimize this process towards a functional alternative for die casting. It should be further investigated how this process can contribute to further medical waste reduction and a circular healthcare economy. Elsevier 2022-11-17 /pmc/articles/PMC9679383/ /pubmed/36425420 http://dx.doi.org/10.1016/j.heliyon.2022.e11711 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
van Straten, Bart
Tantuo, Brian
Dankelman, Jenny
Sperna Weiland, Nicolaas H.
Boersma, Bendiks Jan
Horeman, Tim
Reprocessing Zamak laryngoscope blades into new instrument parts; an ‘all-in-one’ experimental study
title Reprocessing Zamak laryngoscope blades into new instrument parts; an ‘all-in-one’ experimental study
title_full Reprocessing Zamak laryngoscope blades into new instrument parts; an ‘all-in-one’ experimental study
title_fullStr Reprocessing Zamak laryngoscope blades into new instrument parts; an ‘all-in-one’ experimental study
title_full_unstemmed Reprocessing Zamak laryngoscope blades into new instrument parts; an ‘all-in-one’ experimental study
title_short Reprocessing Zamak laryngoscope blades into new instrument parts; an ‘all-in-one’ experimental study
title_sort reprocessing zamak laryngoscope blades into new instrument parts; an ‘all-in-one’ experimental study
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679383/
https://www.ncbi.nlm.nih.gov/pubmed/36425420
http://dx.doi.org/10.1016/j.heliyon.2022.e11711
work_keys_str_mv AT vanstratenbart reprocessingzamaklaryngoscopebladesintonewinstrumentpartsanallinoneexperimentalstudy
AT tantuobrian reprocessingzamaklaryngoscopebladesintonewinstrumentpartsanallinoneexperimentalstudy
AT dankelmanjenny reprocessingzamaklaryngoscopebladesintonewinstrumentpartsanallinoneexperimentalstudy
AT spernaweilandnicolaash reprocessingzamaklaryngoscopebladesintonewinstrumentpartsanallinoneexperimentalstudy
AT boersmabendiksjan reprocessingzamaklaryngoscopebladesintonewinstrumentpartsanallinoneexperimentalstudy
AT horemantim reprocessingzamaklaryngoscopebladesintonewinstrumentpartsanallinoneexperimentalstudy