Cargando…
A retrospect of ozone formation mechanisms during the COVID-19 lockdown: The potential role of isoprene()
Wuhan took strict measures to prevent the spread of COVID-19 from January 26 to April 7 in 2020. The lockdown reduced the concentrations of atmospheric pollutants, except ozone (O(3)). To investigate the increase in O(3) during the lockdown, trace gas pollutants were collected. The initial concentra...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679402/ https://www.ncbi.nlm.nih.gov/pubmed/36427823 http://dx.doi.org/10.1016/j.envpol.2022.120728 |
Sumario: | Wuhan took strict measures to prevent the spread of COVID-19 from January 26 to April 7 in 2020. The lockdown reduced the concentrations of atmospheric pollutants, except ozone (O(3)). To investigate the increase in O(3) during the lockdown, trace gas pollutants were collected. The initial concentrations of volatile organic compounds (VOCs) were calculated based on a photochemical ratio method, and the ozone formation potential (OFP) was obtained using the initial and measured VOC concentrations. The O(3) formation regime was NO(X)-limited based on the VOCs/NO(X) diurnal ratios during the lockdown period. The reduced nitric oxide (NO) concentrations and lower wind speed (WS) could explain the night-time O(3) accumulation. The initial total VOCs (TVOCs) during the lockdown were 47.6 ± 2.9 ppbv, and alkenes contributed 48.1%. The photochemical loss amounts of alkenes were an order of magnitude higher than those of alkenes in the same period in 2019 and increased from 16.6 to 28.0 ppbv in the daytime. The higher initial alkene concentrations sustained higher OFP during the lockdown, reaching between 252.4 and 504.4 ppbv. The initial isoprene contributed approximately 35.0–55.0% to the total OFP and had a positive correlation with the increasing O(3) concentrations. Approximately 75.5% of the temperatures were concentrated in the range of 5 and 20 °C, which were higher than those in 2019. In addition to stronger solar radiation, the higher temperatures induced higher isoprene emission rates, partially accounting for the higher isoprene concentrations. Lower isoprene-emitting trees should be considered for future urban vegetation to control O(3) episodes. |
---|