Cargando…
The specific applications of the TSR-based method in identifying Zn(2+) binding sites of proteases and ACE/ACE2
We have developed an alignment-free TSR (Triangular Spatial Relationship)-based computational method for protein structural comparison and motif identification and discovery. To demonstrate the potential applications of the method, we have generated two datasets. One dataset contains five classes: A...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679521/ https://www.ncbi.nlm.nih.gov/pubmed/36426009 http://dx.doi.org/10.1016/j.dib.2022.108629 |
_version_ | 1784834211065102336 |
---|---|
author | Sarkar, Titli Reaux, Camille R. Li, Jianxiong Raghavan, Vijay V. Xu, Wu |
author_facet | Sarkar, Titli Reaux, Camille R. Li, Jianxiong Raghavan, Vijay V. Xu, Wu |
author_sort | Sarkar, Titli |
collection | PubMed |
description | We have developed an alignment-free TSR (Triangular Spatial Relationship)-based computational method for protein structural comparison and motif identification and discovery. To demonstrate the potential applications of the method, we have generated two datasets. One dataset contains five classes: Actin/Hsp70, serine protease (chymotrypsin/trypsin/elastase), ArsC/Prdx2, PKA/PKB/PKC, and AChE/BChE at the hierarchical level 1 and twelve groups at the level 2. The other dataset includes representative proteases and ACE/ACE2. The x,y, z coordinates of the structures were obtained from PDB. We calculated the keys (or features) that represent each structure using the TSR-based method. The dataset and data presented here include additional information that help the readers become aware of specific applications of the TSR-based method in protein clustering, identification and discovery of metal ion binding sites as well as to understand the effect of amino acid grouping on protein 3D structural relationships at both global and local levels. |
format | Online Article Text |
id | pubmed-9679521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96795212022-11-23 The specific applications of the TSR-based method in identifying Zn(2+) binding sites of proteases and ACE/ACE2 Sarkar, Titli Reaux, Camille R. Li, Jianxiong Raghavan, Vijay V. Xu, Wu Data Brief Data Article We have developed an alignment-free TSR (Triangular Spatial Relationship)-based computational method for protein structural comparison and motif identification and discovery. To demonstrate the potential applications of the method, we have generated two datasets. One dataset contains five classes: Actin/Hsp70, serine protease (chymotrypsin/trypsin/elastase), ArsC/Prdx2, PKA/PKB/PKC, and AChE/BChE at the hierarchical level 1 and twelve groups at the level 2. The other dataset includes representative proteases and ACE/ACE2. The x,y, z coordinates of the structures were obtained from PDB. We calculated the keys (or features) that represent each structure using the TSR-based method. The dataset and data presented here include additional information that help the readers become aware of specific applications of the TSR-based method in protein clustering, identification and discovery of metal ion binding sites as well as to understand the effect of amino acid grouping on protein 3D structural relationships at both global and local levels. Elsevier 2022-09-23 /pmc/articles/PMC9679521/ /pubmed/36426009 http://dx.doi.org/10.1016/j.dib.2022.108629 Text en Published by Elsevier Inc. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Data Article Sarkar, Titli Reaux, Camille R. Li, Jianxiong Raghavan, Vijay V. Xu, Wu The specific applications of the TSR-based method in identifying Zn(2+) binding sites of proteases and ACE/ACE2 |
title | The specific applications of the TSR-based method in identifying Zn(2+) binding sites of proteases and ACE/ACE2 |
title_full | The specific applications of the TSR-based method in identifying Zn(2+) binding sites of proteases and ACE/ACE2 |
title_fullStr | The specific applications of the TSR-based method in identifying Zn(2+) binding sites of proteases and ACE/ACE2 |
title_full_unstemmed | The specific applications of the TSR-based method in identifying Zn(2+) binding sites of proteases and ACE/ACE2 |
title_short | The specific applications of the TSR-based method in identifying Zn(2+) binding sites of proteases and ACE/ACE2 |
title_sort | specific applications of the tsr-based method in identifying zn(2+) binding sites of proteases and ace/ace2 |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679521/ https://www.ncbi.nlm.nih.gov/pubmed/36426009 http://dx.doi.org/10.1016/j.dib.2022.108629 |
work_keys_str_mv | AT sarkartitli thespecificapplicationsofthetsrbasedmethodinidentifyingzn2bindingsitesofproteasesandaceace2 AT reauxcamiller thespecificapplicationsofthetsrbasedmethodinidentifyingzn2bindingsitesofproteasesandaceace2 AT lijianxiong thespecificapplicationsofthetsrbasedmethodinidentifyingzn2bindingsitesofproteasesandaceace2 AT raghavanvijayv thespecificapplicationsofthetsrbasedmethodinidentifyingzn2bindingsitesofproteasesandaceace2 AT xuwu thespecificapplicationsofthetsrbasedmethodinidentifyingzn2bindingsitesofproteasesandaceace2 AT sarkartitli specificapplicationsofthetsrbasedmethodinidentifyingzn2bindingsitesofproteasesandaceace2 AT reauxcamiller specificapplicationsofthetsrbasedmethodinidentifyingzn2bindingsitesofproteasesandaceace2 AT lijianxiong specificapplicationsofthetsrbasedmethodinidentifyingzn2bindingsitesofproteasesandaceace2 AT raghavanvijayv specificapplicationsofthetsrbasedmethodinidentifyingzn2bindingsitesofproteasesandaceace2 AT xuwu specificapplicationsofthetsrbasedmethodinidentifyingzn2bindingsitesofproteasesandaceace2 |