Cargando…
Applying Negative Binomial Distribution in Diagnostic Classification Models for Analyzing Count Data
Diagnostic classification models (DCMs) have been used to classify examinees into groups based on their possession status of a set of latent traits. In addition to traditional item-based scoring approaches, examinees may be scored based on their completion of a series of small and similar tasks. Tho...
Autores principales: | Liu, Ren, Heo, Ihnwhi, Liu, Haiyan, Shi, Dexin, Jiang, Zhehan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679925/ https://www.ncbi.nlm.nih.gov/pubmed/36425286 http://dx.doi.org/10.1177/01466216221124604 |
Ejemplares similares
-
Negative binomial mixed models for analyzing microbiome count data
por: Zhang, Xinyan, et al.
Publicado: (2017) -
Some thoughts on the negative binomial count distribution and correlations
por: Carruthers, Peter A
Publicado: (1994) -
Diagnostic Classification Models for a Mixture of Ordered and Non-ordered Response Options in Rating Scales
por: Liu, Ren, et al.
Publicado: (2022) -
Negative binomial mixed models for analyzing longitudinal CD4 count data
por: Yirga, Ashenafi A., et al.
Publicado: (2020) -
Sequence count data are poorly fit by the negative binomial distribution
por: Hawinkel, Stijn, et al.
Publicado: (2020)