Cargando…
BepiPred‐3.0: Improved B‐cell epitope prediction using protein language models
B‐cell epitope prediction tools are of great medical and commercial interest due to their practical applications in vaccine development and disease diagnostics. The introduction of protein language models (LMs), trained on unprecedented large datasets of protein sequences and structures, tap into a...
Autores principales: | Clifford, Joakim Nøddeskov, Høie, Magnus Haraldson, Deleuran, Sebastian, Peters, Bjoern, Nielsen, Morten, Marcatili, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679979/ https://www.ncbi.nlm.nih.gov/pubmed/36366745 http://dx.doi.org/10.1002/pro.4497 |
Ejemplares similares
-
BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes
por: Jespersen, Martin Closter, et al.
Publicado: (2017) -
VirulentPred 2.0: An improved method for prediction of virulent proteins in bacterial pathogens
por: Sharma, Arun, et al.
Publicado: (2023) -
IEDB‐3D 2.0: Structural data analysis within the Immune Epitope Database
por: Mendes, Marcus, et al.
Publicado: (2023) -
NetSurfP-3.0: accurate and fast prediction of protein structural features by protein language models and deep learning
por: Høie, Magnus Haraldson, et al.
Publicado: (2022) -
BepiTBR: T-B reciprocity enhances B cell epitope prediction
por: Zhu, James, et al.
Publicado: (2022)