Cargando…
Evaluation of Influencing Factors on the Maximum Climbing Specific Holding Time: An Inferential Statistics and Machine Learning Approach
Handgrip strength (HGS) appears to be an indicator of climbing performance. The transferability of HGS measurements obtained using a hand dynamometer and factors that influence the maximal climbing-specific holding time (CSHT) are largely unclear. Forty-eight healthy subjects (27 female, 21 male; ag...
Autores principales: | Dindorf, Carlo, Bartaguiz, Eva, Dully, Jonas, Sprenger, Max, Merk, Anna, Becker, Stephan, Fröhlich, Michael, Ludwig, Oliver |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680242/ https://www.ncbi.nlm.nih.gov/pubmed/36412757 http://dx.doi.org/10.3390/jfmk7040095 |
Ejemplares similares
-
In Vivo Monitoring of Acute and Intermittent Fatigue in Sport Climbing Using Near-Infrared Spectroscopy Wearable Biosensors
por: Dindorf, Carlo, et al.
Publicado: (2023) -
Fatigue as a key factor for testing knee stability with single leg drop landing for injury prevention and return to play tests
por: Becker, S., et al.
Publicado: (2023) -
Conceptual Structure and Current Trends in Artificial Intelligence, Machine Learning, and Deep Learning Research in Sports: A Bibliometric Review
por: Dindorf, Carlo, et al.
Publicado: (2022) -
Effects of Unilateral Muscle Fatigue on Thermographic Skin Surface Temperature of Back and Abdominal Muscles—A Pilot Study
por: Dindorf, Carlo, et al.
Publicado: (2022) -
Machine Learning and Explainable Artificial Intelligence Using Counterfactual Explanations for Evaluating Posture Parameters
por: Dindorf, Carlo, et al.
Publicado: (2023)