Cargando…

Dietary Supplementation with D-Ribose-L-Cysteine Prevents Hepatic Stress and Pro-Inflammatory Responses in Male Wistar Rats Fed a High-Fructose High-Fat Diet

Diets rich in fats and fructose are associated with the pathogenesis of oxidative stress-induced non-alcoholic fatty liver disease. Therefore, we investigated the effect of D-ribose-L-cysteine (DRLC) in high-fructose high-fat (HFHF) diet-fed rats. Twenty rats (n = 5), divided into four groups, were...

Descripción completa

Detalles Bibliográficos
Autores principales: Ojetola, Abodunrin Adebayo, Asiwe, Jerome Ndudi, Adeyemi, Wale Johnson, Ogundipe, Dare Joshua, Fasanmade, Adesoji Adedipe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680386/
https://www.ncbi.nlm.nih.gov/pubmed/36412634
http://dx.doi.org/10.3390/pathophysiology29040049
Descripción
Sumario:Diets rich in fats and fructose are associated with the pathogenesis of oxidative stress-induced non-alcoholic fatty liver disease. Therefore, we investigated the effect of D-ribose-L-cysteine (DRLC) in high-fructose high-fat (HFHF) diet-fed rats. Twenty rats (n = 5), divided into four groups, were simultaneously exposed to HFHF and/or DRLC (250 mg/kg) orally during the 8 weeks of the study. Results showed that HFHF precipitated pro-inflammation and selective disruption of the oxidative stress markers. There were significant decreases in the level of antioxidants such as superoxide dismutase (SOD), glutathione peroxidase (GPX), total antioxidant capacity (TAC), hepatic SOD and GPX. Significant increases in serum levels of uric acid (UA), tumour necrosis factor-alpha (TNF-α), C-reactive protein (CRP) and hepatic Xanthine oxidase (XO) were observed in the HFHF compared to the control. In the HFHF + DRLC group, oxidative stress was mitigated due to differences in serum levels of SOD, GPX, TAC, TNF-α, liver SOD, and XO relative to control. The administration of DRLC alone caused significant reductions in malondialdehyde, UA and CRP and a significant increase in SOD compared to the control. DRLC prevents hepatic and systemic oxidative stress and pro-inflammatory events in HFHF diet-fed rats.