Cargando…
Estimation of Cardiac Short Axis Slice Levels with a Cascaded Deep Convolutional and Recurrent Neural Network Model
Automatic identification of short axis slice levels in cardiac magnetic resonance imaging (MRI) is important in efficient and precise diagnosis of cardiac disease based on the geometry of the left ventricle. We developed a combined model of convolutional neural network (CNN) and recurrent neural net...
Autores principales: | Ho, Namgyu, Kim, Yoon-Chul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680453/ https://www.ncbi.nlm.nih.gov/pubmed/36412688 http://dx.doi.org/10.3390/tomography8060229 |
Ejemplares similares
-
Evaluation of transfer learning in deep convolutional neural network models for cardiac short axis slice classification
por: Ho, Namgyu, et al.
Publicado: (2021) -
Evaluation of convolutional neural networks for the detection of inter-breath-hold motion from a stack of cardiac short axis slice images
por: Kim, Yoon-Chul, et al.
Publicado: (2023) -
Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation
por: Wang, Guotai, et al.
Publicado: (2019) -
Deeper Profiles and Cascaded Recurrent and Convolutional Neural Networks for state-of-the-art Protein Secondary Structure Prediction
por: Torrisi, Mirko, et al.
Publicado: (2019) -
Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network
por: Shaaf, Zakarya Farea, et al.
Publicado: (2022)