Cargando…
Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking
Uncertainty of target motion, limited perception ability of onboard cameras, and constrained control have brought new challenges to unmanned aerial vehicle (UAV) dynamic target tracking control. In virtue of the powerful fitting ability and learning ability of the neural network, this paper proposes...
Autores principales: | Zhao, Jiang, Liu, Han, Sun, Jiaming, Wu, Kun, Cai, Zhihao, Ma, Yan, Wang, Yingxun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680462/ https://www.ncbi.nlm.nih.gov/pubmed/36412725 http://dx.doi.org/10.3390/biomimetics7040197 |
Ejemplares similares
-
MNNMs Integrated Control for UAV Autonomous Tracking Randomly Moving Target Based on Learning Method
por: Li, Mingjun, et al.
Publicado: (2021) -
UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy
por: Xie, Jingyi, et al.
Publicado: (2020) -
End-to-End Deep One-Class Learning for Anomaly Detection in UAV Video Stream
por: Hamdi, Slim, et al.
Publicado: (2021) -
Unified Accurate Attitude Control for Dual-Tiltrotor UAV with Cyclic Pitch Using Actuator Dynamics Compensated LADRC
por: Wang, Zexin, et al.
Publicado: (2022) -
A Bio-Inspired Decision-Making Method of UAV Swarm for Attack-Defense Confrontation via Multi-Agent Reinforcement Learning
por: Chi, Pei, et al.
Publicado: (2023)