Cargando…
Deep Learning Prediction of Pathologic Complete Response in Breast Cancer Using MRI and Other Clinical Data: A Systematic Review
Breast cancer patients who have pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) are more likely to have better clinical outcomes. The ability to predict which patient will respond to NAC early in the treatment course is important because it could help to minimize unnecessary t...
Autores principales: | Khan, Nabeeha, Adam, Richard, Huang, Pauline, Maldjian, Takouhie, Duong, Tim Q. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680498/ https://www.ncbi.nlm.nih.gov/pubmed/36412691 http://dx.doi.org/10.3390/tomography8060232 |
Ejemplares similares
-
Machine learning with textural analysis of longitudinal multiparametric MRI and molecular subtypes accurately predicts pathologic complete response in patients with invasive breast cancer
por: Syed, Aaquib, et al.
Publicado: (2023) -
Deep learning applications to breast cancer detection by magnetic resonance imaging: a literature review
por: Adam, Richard, et al.
Publicado: (2023) -
Internal mammary lymph nodal response to neoadjuvant chemotherapy on imaging and breast cancer prognosis
por: Adam, Richard, et al.
Publicado: (2022) -
Mammographic Findings of Diffuse Axillary Tail Trabecular Thickening After the Second Booster of COVID-19 Vaccination
por: Adam, Richard, et al.
Publicado: (2022) -
Mammographic findings of diffuse axillary tail trabecular thickening following immunization with mRNA COVID-19 vaccines: Case series study()
por: Adam, Richard, et al.
Publicado: (2022)