Cargando…
SegVeg: Segmenting RGB Images into Green and Senescent Vegetation by Combining Deep and Shallow Methods
Pixel segmentation of high-resolution RGB images into chlorophyll-active or nonactive vegetation classes is a first step often required before estimating key traits of interest. We have developed the SegVeg approach for semantic segmentation of RGB images into three classes (background, green, and s...
Autores principales: | Serouart, Mario, Madec, Simon, David, Etienne, Velumani, Kaaviya, Lopez Lozano, Raul, Weiss, Marie, Baret, Frédéric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680505/ https://www.ncbi.nlm.nih.gov/pubmed/36451876 http://dx.doi.org/10.34133/2022/9803570 |
Ejemplares similares
-
VegAnn, Vegetation Annotation of multi-crop RGB images acquired under diverse conditions for segmentation
por: Madec, Simon, et al.
Publicado: (2023) -
Estimates of Maize Plant Density from UAV RGB Images Using Faster-RCNN Detection Model: Impact of the Spatial Resolution
por: Velumani, K., et al.
Publicado: (2021) -
Analyzing Changes in Maize Leaves Orientation due to GxExM Using an Automatic Method from RGB Images
por: Serouart, Mario, et al.
Publicado: (2023) -
An explorative study with convenience vegetables in urban Nigeria—The Veg-on-Wheels intervention
por: Snoek, Harriette M., et al.
Publicado: (2022) -
VegNet: Dataset of vegetable quality images for machine learning applications
por: Suryawanshi, Yogesh, et al.
Publicado: (2022)