Cargando…
Applying a CT texture analysis model trained with deep‐learning reconstruction images to iterative reconstruction images in pulmonary nodule diagnosis
OBJECTIVE: To investigate the feasibility and accuracy of applying a computed tomography (CT) texture analysis model trained with deep‐learning reconstruction images to iterative reconstruction images for classifying pulmonary nodules. MATERIALS AND METHODS: CT images of 102 patients, with a total o...
Autores principales: | Wang, Qingle, Xu, Shijie, Zhang, Guozhi, Zhang, Xingwei, Gu, Junying, Yang, Shuyi, Zeng, Mengsu, Zhang, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680564/ https://www.ncbi.nlm.nih.gov/pubmed/35998185 http://dx.doi.org/10.1002/acm2.13759 |
Ejemplares similares
-
Joint application of hybrid iterative reconstruction and adaptive filters on neck‐and‐shoulder CT imaging: A clinical evaluation
por: Jin, Wenfeng, et al.
Publicado: (2022) -
A stopping criterion for iterative proton CT image reconstruction based on correlated noise properties
por: DeJongh, Ethan A., et al.
Publicado: (2023) -
A pitfall of using the circular‐edge technique with image averaging for spatial resolution measurement in iteratively reconstructed CT images
por: Narita, Akihiro, et al.
Publicado: (2020) -
Physical characterization of a new CT iterative reconstruction method operating in sinogram space
por: Ghetti, Caterina, et al.
Publicado: (2013) -
Image texture and radiation dose properties in CT
por: Mozejko, Dawid, et al.
Publicado: (2016)