Cargando…
Super‐resolution of brain tumor MRI images based on deep learning
INTRODUCTION: To explore and evaluate the performance of MRI‐based brain tumor super‐resolution generative adversarial network (MRBT‐SR‐GAN) for improving the MRI image resolution in brain tumors. METHODS: A total of 237 patients from December 2018 and April 2020 with T2‐fluid attenuated inversion r...
Autores principales: | Zhou, Zhiyi, Ma, Anbang, Feng, Qiuting, Wang, Ran, Cheng, Lilin, Chen, Xin, Yang, Xi, Liao, Keman, Miao, Yifeng, Qiu, Yongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680577/ https://www.ncbi.nlm.nih.gov/pubmed/36107021 http://dx.doi.org/10.1002/acm2.13758 |
Ejemplares similares
-
Histone methyltransferase SUV39H2 regulates cell growth and chemosensitivity in glioma via regulation of hedgehog signaling
por: Wang, Ran, et al.
Publicado: (2019) -
Unsupervised deep learning registration model for multimodal brain images
por: Abbasi, Samaneh, et al.
Publicado: (2023) -
Image quality improvement with deep learning‐based reconstruction on abdominal ultrahigh‐resolution CT: A phantom study
por: Shirasaka, Takashi, et al.
Publicado: (2021) -
Super-resolution recurrent convolutional neural networks for learning with multi-resolution whole slide images
por: Mukherjee, Lopamudra, et al.
Publicado: (2019) -
Performance of deep learning synthetic CTs for MR‐only brain radiation therapy
por: Liu, Xiaoning, et al.
Publicado: (2021)