Cargando…
Development of an unsupervised cycle contrastive unpaired translation network for MRI‐to‐CT synthesis
PURPOSE: The purpose of this work is to develop and evaluate a novel cycle‐contrastive unpaired translation network (cycleCUT) for synthetic computed tomography (sCT) generation from T1‐weighted magnetic resonance images (MRI). METHODS: The cycleCUT proposed in this work integrated the contrastive l...
Autores principales: | Wang, Jiangtao, Yan, Bing, Wu, Xinhong, Jiang, Xiao, Zuo, Yang, Yang, Yidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680583/ https://www.ncbi.nlm.nih.gov/pubmed/36168935 http://dx.doi.org/10.1002/acm2.13775 |
Ejemplares similares
-
Unpaired MR-CT brain dataset for unsupervised image translation
por: Al-Kadi, Omar S., et al.
Publicado: (2022) -
Rapid unpaired CBCT‐based synthetic CT for CBCT‐guided adaptive radiotherapy
por: Wynne, Jacob F., et al.
Publicado: (2023) -
Artifact removal for unpaired thorax CBCT images using a feature fusion residual network and contextual loss
por: Zhuang, Wenqin, et al.
Publicado: (2023) -
Deformable registration of chest CT images using a 3D convolutional neural network based on unsupervised learning
por: Zheng, Yongnan, et al.
Publicado: (2021) -
Deep CT to MR Synthesis Using Paired and Unpaired Data
por: Jin, Cheng-Bin, et al.
Publicado: (2019)