Cargando…
Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII
PURPOSE: Collagen XII plays a role in regulating the structure and mechanical properties of the cornea. In this work, several optical elastography techniques were used to investigate the effect of collagen XII deficiency on the stiffness of the murine cornea. METHODS: A three-prong optical elastogra...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680591/ https://www.ncbi.nlm.nih.gov/pubmed/36383352 http://dx.doi.org/10.1167/iovs.63.12.24 |
_version_ | 1784834454390308864 |
---|---|
author | Nair, Achuth Ambekar, Yogeshwari S. Zevallos-Delgado, Christian Mekonnen, Taye Sun, Mei Zvietcovich, Fernando Singh, Manmohan Aglyamov, Salavat Koch, Manuel Scarcelli, Giuliano Espana, Edgar M. Larin, Kirill V. |
author_facet | Nair, Achuth Ambekar, Yogeshwari S. Zevallos-Delgado, Christian Mekonnen, Taye Sun, Mei Zvietcovich, Fernando Singh, Manmohan Aglyamov, Salavat Koch, Manuel Scarcelli, Giuliano Espana, Edgar M. Larin, Kirill V. |
author_sort | Nair, Achuth |
collection | PubMed |
description | PURPOSE: Collagen XII plays a role in regulating the structure and mechanical properties of the cornea. In this work, several optical elastography techniques were used to investigate the effect of collagen XII deficiency on the stiffness of the murine cornea. METHODS: A three-prong optical elastography approach was used to investigate the mechanical properties of the cornea. Brillouin microscopy, air-coupled ultrasonic optical coherence elastography (OCE) and heartbeat OCE were used to assess the mechanical properties of wild type (WT) and collagen XII–deficient (Col12a1(–/–)) murine corneas. The Brillouin frequency shift, elastic wave speed, and compressive strain were all measured as a function of intraocular pressure (IOP). RESULTS: All three optical elastography modalities measured a significantly decreased stiffness in the Col12a1(–/–) compared to the WT (P < 0.01 for all three modalities). The optical coherence elastography techniques showed that mean stiffness increased as a function of IOP; however, Brillouin microscopy showed no discernable trend in Brillouin frequency shift as a function of IOP. CONCLUSIONS: Our approach suggests that the absence of collagen XII significantly softens the cornea. Although both optical coherence elastography techniques showed an expected increase in corneal stiffness as a function of IOP, Brillouin microscopy did not show such a relationship, suggesting that the Brillouin longitudinal modulus may not be affected by changes in IOP. Future work will focus on multimodal biomechanical models, evaluating the effects of other collagen types on corneal stiffness, and in vivo measurements. |
format | Online Article Text |
id | pubmed-9680591 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-96805912022-11-23 Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII Nair, Achuth Ambekar, Yogeshwari S. Zevallos-Delgado, Christian Mekonnen, Taye Sun, Mei Zvietcovich, Fernando Singh, Manmohan Aglyamov, Salavat Koch, Manuel Scarcelli, Giuliano Espana, Edgar M. Larin, Kirill V. Invest Ophthalmol Vis Sci Cornea PURPOSE: Collagen XII plays a role in regulating the structure and mechanical properties of the cornea. In this work, several optical elastography techniques were used to investigate the effect of collagen XII deficiency on the stiffness of the murine cornea. METHODS: A three-prong optical elastography approach was used to investigate the mechanical properties of the cornea. Brillouin microscopy, air-coupled ultrasonic optical coherence elastography (OCE) and heartbeat OCE were used to assess the mechanical properties of wild type (WT) and collagen XII–deficient (Col12a1(–/–)) murine corneas. The Brillouin frequency shift, elastic wave speed, and compressive strain were all measured as a function of intraocular pressure (IOP). RESULTS: All three optical elastography modalities measured a significantly decreased stiffness in the Col12a1(–/–) compared to the WT (P < 0.01 for all three modalities). The optical coherence elastography techniques showed that mean stiffness increased as a function of IOP; however, Brillouin microscopy showed no discernable trend in Brillouin frequency shift as a function of IOP. CONCLUSIONS: Our approach suggests that the absence of collagen XII significantly softens the cornea. Although both optical coherence elastography techniques showed an expected increase in corneal stiffness as a function of IOP, Brillouin microscopy did not show such a relationship, suggesting that the Brillouin longitudinal modulus may not be affected by changes in IOP. Future work will focus on multimodal biomechanical models, evaluating the effects of other collagen types on corneal stiffness, and in vivo measurements. The Association for Research in Vision and Ophthalmology 2022-11-16 /pmc/articles/PMC9680591/ /pubmed/36383352 http://dx.doi.org/10.1167/iovs.63.12.24 Text en Copyright 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Cornea Nair, Achuth Ambekar, Yogeshwari S. Zevallos-Delgado, Christian Mekonnen, Taye Sun, Mei Zvietcovich, Fernando Singh, Manmohan Aglyamov, Salavat Koch, Manuel Scarcelli, Giuliano Espana, Edgar M. Larin, Kirill V. Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII |
title | Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII |
title_full | Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII |
title_fullStr | Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII |
title_full_unstemmed | Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII |
title_short | Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII |
title_sort | multiple optical elastography techniques reveal the regulation of corneal stiffness by collagen xii |
topic | Cornea |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680591/ https://www.ncbi.nlm.nih.gov/pubmed/36383352 http://dx.doi.org/10.1167/iovs.63.12.24 |
work_keys_str_mv | AT nairachuth multipleopticalelastographytechniquesrevealtheregulationofcornealstiffnessbycollagenxii AT ambekaryogeshwaris multipleopticalelastographytechniquesrevealtheregulationofcornealstiffnessbycollagenxii AT zevallosdelgadochristian multipleopticalelastographytechniquesrevealtheregulationofcornealstiffnessbycollagenxii AT mekonnentaye multipleopticalelastographytechniquesrevealtheregulationofcornealstiffnessbycollagenxii AT sunmei multipleopticalelastographytechniquesrevealtheregulationofcornealstiffnessbycollagenxii AT zvietcovichfernando multipleopticalelastographytechniquesrevealtheregulationofcornealstiffnessbycollagenxii AT singhmanmohan multipleopticalelastographytechniquesrevealtheregulationofcornealstiffnessbycollagenxii AT aglyamovsalavat multipleopticalelastographytechniquesrevealtheregulationofcornealstiffnessbycollagenxii AT kochmanuel multipleopticalelastographytechniquesrevealtheregulationofcornealstiffnessbycollagenxii AT scarcelligiuliano multipleopticalelastographytechniquesrevealtheregulationofcornealstiffnessbycollagenxii AT espanaedgarm multipleopticalelastographytechniquesrevealtheregulationofcornealstiffnessbycollagenxii AT larinkirillv multipleopticalelastographytechniquesrevealtheregulationofcornealstiffnessbycollagenxii |