Cargando…
Heterogeneous mission planning for a single unmanned aerial vehicle (UAV) with attention-based deep reinforcement learning
Large-scale and complex mission environments require unmanned aerial vehicles (UAVs) to deal with various types of missions while considering their operational and dynamic constraints. This article proposes a deep learning-based heterogeneous mission planning algorithm for a single UAV. We first for...
Autores principales: | Jung, Minjae, Oh, Hyondong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680870/ https://www.ncbi.nlm.nih.gov/pubmed/36426245 http://dx.doi.org/10.7717/peerj-cs.1119 |
Ejemplares similares
-
LOANet: a lightweight network using object attention for extracting buildings and roads from UAV aerial remote sensing images
por: Han, Xiaoxiang, et al.
Publicado: (2023) -
A Unifying Framework for Reinforcement Learning and Planning
por: Moerland, Thomas M., et al.
Publicado: (2022) -
Unmanned Aerial Vehicles (UAVs) for Physical Progress Monitoring of Construction
por: Jacob-Loyola, Nicolás, et al.
Publicado: (2021) -
Gamma and vega hedging using deep distributional reinforcement learning
por: Cao, Jay, et al.
Publicado: (2023) -
Estimating plant distance in maize using Unmanned Aerial Vehicle (UAV)
por: Zhang, Jinshui, et al.
Publicado: (2018)