Cargando…
Predicting no-shows for dental appointments
Patient no-shows is a significant problem in healthcare, reaching up to 80% of booked appointments and costing billions of dollars. Predicting no-shows for individual patients empowers clinics to implement better mitigation strategies. Patients’ no-show behavior varies across health clinics and the...
Autores principales: | Alabdulkarim, Yazeed, Almukaynizi, Mohammed, Alameer, Abdulmajeed, Makanati, Bassil, Althumairy, Riyadh, Almaslukh, Abdulaziz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680883/ https://www.ncbi.nlm.nih.gov/pubmed/36426240 http://dx.doi.org/10.7717/peerj-cs.1147 |
Ejemplares similares
-
Developing and testing a prediction model for periodontal disease using machine learning and big electronic dental record data
por: Patel, Jay S., et al.
Publicado: (2022) -
Can I Influence You? Development of a Scale to Measure Perceived Persuasiveness and Two Studies Showing the Use of the Scale
por: Thomas, Rosemary J., et al.
Publicado: (2019) -
Descriptive analysis of dental X-ray images using various practical methods: A review
por: Kumar, Anuj, et al.
Publicado: (2021) -
Postures anomaly tracking and prediction learning model over crowd data analytics
por: Aljuaid, Hanan, et al.
Publicado: (2023) -
A hybrid mask RCNN-based tool to localize dental cavities from real-time mixed photographic images
por: Rashid, Umer, et al.
Publicado: (2022)