Cargando…

Towards survival prediction of cancer patients using medical images

Survival prediction of a patient is a critical task in clinical medicine for physicians and patients to make an informed decision. Several survival and risk scoring methods have been developed to estimate the survival score of patients using clinical information. For instance, the Global Registry of...

Descripción completa

Detalles Bibliográficos
Autores principales: Ul Haq, Nazeef, Tahir, Bilal, Firdous, Samar, Amir Mehmood, Muhammad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680890/
https://www.ncbi.nlm.nih.gov/pubmed/36426251
http://dx.doi.org/10.7717/peerj-cs.1090
_version_ 1784834504281554944
author Ul Haq, Nazeef
Tahir, Bilal
Firdous, Samar
Amir Mehmood, Muhammad
author_facet Ul Haq, Nazeef
Tahir, Bilal
Firdous, Samar
Amir Mehmood, Muhammad
author_sort Ul Haq, Nazeef
collection PubMed
description Survival prediction of a patient is a critical task in clinical medicine for physicians and patients to make an informed decision. Several survival and risk scoring methods have been developed to estimate the survival score of patients using clinical information. For instance, the Global Registry of Acute Coronary Events (GRACE) and Thrombolysis in Myocardial Infarction (TIMI) risk scores are developed for the survival prediction of heart patients. Recently, state-of-the-art medical imaging and analysis techniques have paved the way for survival prediction of cancer patients by understanding key features extracted from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scanned images with the help of image processing and machine learning techniques. However, survival prediction is a challenging task due to the complexity in benchmarking of image features, feature selection methods, and machine learning models. In this article, we evaluate the performance of 156 visual features from radiomic and hand-crafted feature classes, six feature selection methods, and 10 machine learning models to benchmark their performance. In addition, MRI scanned Brain Tumor Segmentation (BraTS) and CT scanned non-small cell lung cancer (NSCLC) datasets are used to train classification and regression models. Our results highlight that logistic regression outperforms for the classification with 66 and 54% accuracy for BraTS and NSCLC datasets, respectively. Moreover, our analysis of best-performing features shows that age is a common and significant feature for survival prediction. Also, gray level and shape-based features play a vital role in regression. We believe that the study can be helpful for oncologists, radiologists, and medical imaging researchers to understand and automate the procedure of decision-making and prognosis of cancer patients.
format Online
Article
Text
id pubmed-9680890
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-96808902022-11-23 Towards survival prediction of cancer patients using medical images Ul Haq, Nazeef Tahir, Bilal Firdous, Samar Amir Mehmood, Muhammad PeerJ Comput Sci Bioinformatics Survival prediction of a patient is a critical task in clinical medicine for physicians and patients to make an informed decision. Several survival and risk scoring methods have been developed to estimate the survival score of patients using clinical information. For instance, the Global Registry of Acute Coronary Events (GRACE) and Thrombolysis in Myocardial Infarction (TIMI) risk scores are developed for the survival prediction of heart patients. Recently, state-of-the-art medical imaging and analysis techniques have paved the way for survival prediction of cancer patients by understanding key features extracted from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scanned images with the help of image processing and machine learning techniques. However, survival prediction is a challenging task due to the complexity in benchmarking of image features, feature selection methods, and machine learning models. In this article, we evaluate the performance of 156 visual features from radiomic and hand-crafted feature classes, six feature selection methods, and 10 machine learning models to benchmark their performance. In addition, MRI scanned Brain Tumor Segmentation (BraTS) and CT scanned non-small cell lung cancer (NSCLC) datasets are used to train classification and regression models. Our results highlight that logistic regression outperforms for the classification with 66 and 54% accuracy for BraTS and NSCLC datasets, respectively. Moreover, our analysis of best-performing features shows that age is a common and significant feature for survival prediction. Also, gray level and shape-based features play a vital role in regression. We believe that the study can be helpful for oncologists, radiologists, and medical imaging researchers to understand and automate the procedure of decision-making and prognosis of cancer patients. PeerJ Inc. 2022-10-26 /pmc/articles/PMC9680890/ /pubmed/36426251 http://dx.doi.org/10.7717/peerj-cs.1090 Text en ©2022 Ul Haq et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
spellingShingle Bioinformatics
Ul Haq, Nazeef
Tahir, Bilal
Firdous, Samar
Amir Mehmood, Muhammad
Towards survival prediction of cancer patients using medical images
title Towards survival prediction of cancer patients using medical images
title_full Towards survival prediction of cancer patients using medical images
title_fullStr Towards survival prediction of cancer patients using medical images
title_full_unstemmed Towards survival prediction of cancer patients using medical images
title_short Towards survival prediction of cancer patients using medical images
title_sort towards survival prediction of cancer patients using medical images
topic Bioinformatics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680890/
https://www.ncbi.nlm.nih.gov/pubmed/36426251
http://dx.doi.org/10.7717/peerj-cs.1090
work_keys_str_mv AT ulhaqnazeef towardssurvivalpredictionofcancerpatientsusingmedicalimages
AT tahirbilal towardssurvivalpredictionofcancerpatientsusingmedicalimages
AT firdoussamar towardssurvivalpredictionofcancerpatientsusingmedicalimages
AT amirmehmoodmuhammad towardssurvivalpredictionofcancerpatientsusingmedicalimages