Cargando…
Deepfake attack prevention using steganography GANs
BACKGROUND: Deepfakes are fake images or videos generated by deep learning algorithms. Ongoing progress in deep learning techniques like auto-encoders and generative adversarial networks (GANs) is approaching a level that makes deepfake detection ideally impossible. A deepfake is created by swapping...
Autores principales: | Noreen, Iram, Muneer, Muhammad Shahid, Gillani, Saira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680891/ https://www.ncbi.nlm.nih.gov/pubmed/36426246 http://dx.doi.org/10.7717/peerj-cs.1125 |
Ejemplares similares
-
Deepfake tweets classification using stacked Bi-LSTM and words embedding
por: Rupapara, Vaibhav, et al.
Publicado: (2021) -
Deepfake video detection: YOLO-Face convolution recurrent approach
por: Ismail, Aya, et al.
Publicado: (2021) -
Membership inference attack on differentially private block coordinate descent
por: Riaz, Shazia, et al.
Publicado: (2023) -
Small facial image dataset augmentation using conditional GANs based on incomplete edge feature input
por: Hung, Shih-Kai, et al.
Publicado: (2021) -
CycleStyleGAN-Based Knowledge Transfer for a Machining Digital Twin
por: Zotov, Evgeny, et al.
Publicado: (2021)