Cargando…

Relational graph convolutional networks: a closer look

In this article, we describe a reproduction of the Relational Graph Convolutional Network (RGCN). Using our reproduction, we explain the intuition behind the model. Our reproduction results empirically validate the correctness of our implementations using benchmark Knowledge Graph datasets on node c...

Descripción completa

Detalles Bibliográficos
Autores principales: Thanapalasingam, Thiviyan, van Berkel, Lucas, Bloem, Peter, Groth, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680895/
https://www.ncbi.nlm.nih.gov/pubmed/36426239
http://dx.doi.org/10.7717/peerj-cs.1073
_version_ 1784834505504194560
author Thanapalasingam, Thiviyan
van Berkel, Lucas
Bloem, Peter
Groth, Paul
author_facet Thanapalasingam, Thiviyan
van Berkel, Lucas
Bloem, Peter
Groth, Paul
author_sort Thanapalasingam, Thiviyan
collection PubMed
description In this article, we describe a reproduction of the Relational Graph Convolutional Network (RGCN). Using our reproduction, we explain the intuition behind the model. Our reproduction results empirically validate the correctness of our implementations using benchmark Knowledge Graph datasets on node classification and link prediction tasks. Our explanation provides a friendly understanding of the different components of the RGCN for both users and researchers extending the RGCN approach. Furthermore, we introduce two new configurations of the RGCN that are more parameter efficient. The code and datasets are available at https://github.com/thiviyanT/torch-rgcn.
format Online
Article
Text
id pubmed-9680895
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-96808952022-11-23 Relational graph convolutional networks: a closer look Thanapalasingam, Thiviyan van Berkel, Lucas Bloem, Peter Groth, Paul PeerJ Comput Sci Artificial Intelligence In this article, we describe a reproduction of the Relational Graph Convolutional Network (RGCN). Using our reproduction, we explain the intuition behind the model. Our reproduction results empirically validate the correctness of our implementations using benchmark Knowledge Graph datasets on node classification and link prediction tasks. Our explanation provides a friendly understanding of the different components of the RGCN for both users and researchers extending the RGCN approach. Furthermore, we introduce two new configurations of the RGCN that are more parameter efficient. The code and datasets are available at https://github.com/thiviyanT/torch-rgcn. PeerJ Inc. 2022-11-02 /pmc/articles/PMC9680895/ /pubmed/36426239 http://dx.doi.org/10.7717/peerj-cs.1073 Text en © 2022 Thanapalasingam et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
spellingShingle Artificial Intelligence
Thanapalasingam, Thiviyan
van Berkel, Lucas
Bloem, Peter
Groth, Paul
Relational graph convolutional networks: a closer look
title Relational graph convolutional networks: a closer look
title_full Relational graph convolutional networks: a closer look
title_fullStr Relational graph convolutional networks: a closer look
title_full_unstemmed Relational graph convolutional networks: a closer look
title_short Relational graph convolutional networks: a closer look
title_sort relational graph convolutional networks: a closer look
topic Artificial Intelligence
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680895/
https://www.ncbi.nlm.nih.gov/pubmed/36426239
http://dx.doi.org/10.7717/peerj-cs.1073
work_keys_str_mv AT thanapalasingamthiviyan relationalgraphconvolutionalnetworksacloserlook
AT vanberkellucas relationalgraphconvolutionalnetworksacloserlook
AT bloempeter relationalgraphconvolutionalnetworksacloserlook
AT grothpaul relationalgraphconvolutionalnetworksacloserlook