Cargando…
Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response
Fight-or-flight responses involve β-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart’s innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel i...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681059/ https://www.ncbi.nlm.nih.gov/pubmed/36424916 http://dx.doi.org/10.1038/s44161-022-00157-y |
_version_ | 1784834534281314304 |
---|---|
author | Papa, Arianne Zakharov, Sergey I. Katchman, Alexander N. Kushner, Jared S. Chen, Bi-xing Yang, Lin Liu, Guoxia Jimenez, Alejandro Sanchez Eisert, Robyn J. Bradshaw, Gary A. Dun, Wen Ali, Shah R. Rodriques, Aaron Zhou, Karen Topkara, Veli Yang, Mu Morrow, John P. Tsai, Emily J. Karlin, Arthur Wan, Elaine Kalocsay, Marian Pitt, Geoffrey S. Colecraft, Henry M. Ben-Johny, Manu Marx, Steven O. |
author_facet | Papa, Arianne Zakharov, Sergey I. Katchman, Alexander N. Kushner, Jared S. Chen, Bi-xing Yang, Lin Liu, Guoxia Jimenez, Alejandro Sanchez Eisert, Robyn J. Bradshaw, Gary A. Dun, Wen Ali, Shah R. Rodriques, Aaron Zhou, Karen Topkara, Veli Yang, Mu Morrow, John P. Tsai, Emily J. Karlin, Arthur Wan, Elaine Kalocsay, Marian Pitt, Geoffrey S. Colecraft, Henry M. Ben-Johny, Manu Marx, Steven O. |
author_sort | Papa, Arianne |
collection | PubMed |
description | Fight-or-flight responses involve β-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart’s innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for β-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of β-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel β-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility. |
format | Online Article Text |
id | pubmed-9681059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-96810592023-05-14 Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response Papa, Arianne Zakharov, Sergey I. Katchman, Alexander N. Kushner, Jared S. Chen, Bi-xing Yang, Lin Liu, Guoxia Jimenez, Alejandro Sanchez Eisert, Robyn J. Bradshaw, Gary A. Dun, Wen Ali, Shah R. Rodriques, Aaron Zhou, Karen Topkara, Veli Yang, Mu Morrow, John P. Tsai, Emily J. Karlin, Arthur Wan, Elaine Kalocsay, Marian Pitt, Geoffrey S. Colecraft, Henry M. Ben-Johny, Manu Marx, Steven O. Nat Cardiovasc Res Article Fight-or-flight responses involve β-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart’s innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for β-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of β-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel β-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility. 2022-11 2022-11-14 /pmc/articles/PMC9681059/ /pubmed/36424916 http://dx.doi.org/10.1038/s44161-022-00157-y Text en https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) . |
spellingShingle | Article Papa, Arianne Zakharov, Sergey I. Katchman, Alexander N. Kushner, Jared S. Chen, Bi-xing Yang, Lin Liu, Guoxia Jimenez, Alejandro Sanchez Eisert, Robyn J. Bradshaw, Gary A. Dun, Wen Ali, Shah R. Rodriques, Aaron Zhou, Karen Topkara, Veli Yang, Mu Morrow, John P. Tsai, Emily J. Karlin, Arthur Wan, Elaine Kalocsay, Marian Pitt, Geoffrey S. Colecraft, Henry M. Ben-Johny, Manu Marx, Steven O. Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response |
title | Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response |
title_full | Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response |
title_fullStr | Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response |
title_full_unstemmed | Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response |
title_short | Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response |
title_sort | rad regulation of ca(v)1.2 channels controls cardiac fight-or-flight response |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681059/ https://www.ncbi.nlm.nih.gov/pubmed/36424916 http://dx.doi.org/10.1038/s44161-022-00157-y |
work_keys_str_mv | AT papaarianne radregulationofcav12channelscontrolscardiacfightorflightresponse AT zakharovsergeyi radregulationofcav12channelscontrolscardiacfightorflightresponse AT katchmanalexandern radregulationofcav12channelscontrolscardiacfightorflightresponse AT kushnerjareds radregulationofcav12channelscontrolscardiacfightorflightresponse AT chenbixing radregulationofcav12channelscontrolscardiacfightorflightresponse AT yanglin radregulationofcav12channelscontrolscardiacfightorflightresponse AT liuguoxia radregulationofcav12channelscontrolscardiacfightorflightresponse AT jimenezalejandrosanchez radregulationofcav12channelscontrolscardiacfightorflightresponse AT eisertrobynj radregulationofcav12channelscontrolscardiacfightorflightresponse AT bradshawgarya radregulationofcav12channelscontrolscardiacfightorflightresponse AT dunwen radregulationofcav12channelscontrolscardiacfightorflightresponse AT alishahr radregulationofcav12channelscontrolscardiacfightorflightresponse AT rodriquesaaron radregulationofcav12channelscontrolscardiacfightorflightresponse AT zhoukaren radregulationofcav12channelscontrolscardiacfightorflightresponse AT topkaraveli radregulationofcav12channelscontrolscardiacfightorflightresponse AT yangmu radregulationofcav12channelscontrolscardiacfightorflightresponse AT morrowjohnp radregulationofcav12channelscontrolscardiacfightorflightresponse AT tsaiemilyj radregulationofcav12channelscontrolscardiacfightorflightresponse AT karlinarthur radregulationofcav12channelscontrolscardiacfightorflightresponse AT wanelaine radregulationofcav12channelscontrolscardiacfightorflightresponse AT kalocsaymarian radregulationofcav12channelscontrolscardiacfightorflightresponse AT pittgeoffreys radregulationofcav12channelscontrolscardiacfightorflightresponse AT colecrafthenrym radregulationofcav12channelscontrolscardiacfightorflightresponse AT benjohnymanu radregulationofcav12channelscontrolscardiacfightorflightresponse AT marxsteveno radregulationofcav12channelscontrolscardiacfightorflightresponse |