Cargando…

Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response

Fight-or-flight responses involve β-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart’s innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel i...

Descripción completa

Detalles Bibliográficos
Autores principales: Papa, Arianne, Zakharov, Sergey I., Katchman, Alexander N., Kushner, Jared S., Chen, Bi-xing, Yang, Lin, Liu, Guoxia, Jimenez, Alejandro Sanchez, Eisert, Robyn J., Bradshaw, Gary A., Dun, Wen, Ali, Shah R., Rodriques, Aaron, Zhou, Karen, Topkara, Veli, Yang, Mu, Morrow, John P., Tsai, Emily J., Karlin, Arthur, Wan, Elaine, Kalocsay, Marian, Pitt, Geoffrey S., Colecraft, Henry M., Ben-Johny, Manu, Marx, Steven O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681059/
https://www.ncbi.nlm.nih.gov/pubmed/36424916
http://dx.doi.org/10.1038/s44161-022-00157-y
_version_ 1784834534281314304
author Papa, Arianne
Zakharov, Sergey I.
Katchman, Alexander N.
Kushner, Jared S.
Chen, Bi-xing
Yang, Lin
Liu, Guoxia
Jimenez, Alejandro Sanchez
Eisert, Robyn J.
Bradshaw, Gary A.
Dun, Wen
Ali, Shah R.
Rodriques, Aaron
Zhou, Karen
Topkara, Veli
Yang, Mu
Morrow, John P.
Tsai, Emily J.
Karlin, Arthur
Wan, Elaine
Kalocsay, Marian
Pitt, Geoffrey S.
Colecraft, Henry M.
Ben-Johny, Manu
Marx, Steven O.
author_facet Papa, Arianne
Zakharov, Sergey I.
Katchman, Alexander N.
Kushner, Jared S.
Chen, Bi-xing
Yang, Lin
Liu, Guoxia
Jimenez, Alejandro Sanchez
Eisert, Robyn J.
Bradshaw, Gary A.
Dun, Wen
Ali, Shah R.
Rodriques, Aaron
Zhou, Karen
Topkara, Veli
Yang, Mu
Morrow, John P.
Tsai, Emily J.
Karlin, Arthur
Wan, Elaine
Kalocsay, Marian
Pitt, Geoffrey S.
Colecraft, Henry M.
Ben-Johny, Manu
Marx, Steven O.
author_sort Papa, Arianne
collection PubMed
description Fight-or-flight responses involve β-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart’s innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for β-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of β-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel β-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility.
format Online
Article
Text
id pubmed-9681059
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-96810592023-05-14 Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response Papa, Arianne Zakharov, Sergey I. Katchman, Alexander N. Kushner, Jared S. Chen, Bi-xing Yang, Lin Liu, Guoxia Jimenez, Alejandro Sanchez Eisert, Robyn J. Bradshaw, Gary A. Dun, Wen Ali, Shah R. Rodriques, Aaron Zhou, Karen Topkara, Veli Yang, Mu Morrow, John P. Tsai, Emily J. Karlin, Arthur Wan, Elaine Kalocsay, Marian Pitt, Geoffrey S. Colecraft, Henry M. Ben-Johny, Manu Marx, Steven O. Nat Cardiovasc Res Article Fight-or-flight responses involve β-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart’s innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for β-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of β-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel β-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility. 2022-11 2022-11-14 /pmc/articles/PMC9681059/ /pubmed/36424916 http://dx.doi.org/10.1038/s44161-022-00157-y Text en https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) .
spellingShingle Article
Papa, Arianne
Zakharov, Sergey I.
Katchman, Alexander N.
Kushner, Jared S.
Chen, Bi-xing
Yang, Lin
Liu, Guoxia
Jimenez, Alejandro Sanchez
Eisert, Robyn J.
Bradshaw, Gary A.
Dun, Wen
Ali, Shah R.
Rodriques, Aaron
Zhou, Karen
Topkara, Veli
Yang, Mu
Morrow, John P.
Tsai, Emily J.
Karlin, Arthur
Wan, Elaine
Kalocsay, Marian
Pitt, Geoffrey S.
Colecraft, Henry M.
Ben-Johny, Manu
Marx, Steven O.
Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response
title Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response
title_full Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response
title_fullStr Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response
title_full_unstemmed Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response
title_short Rad regulation of Ca(V)1.2 channels controls cardiac fight-or-flight response
title_sort rad regulation of ca(v)1.2 channels controls cardiac fight-or-flight response
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681059/
https://www.ncbi.nlm.nih.gov/pubmed/36424916
http://dx.doi.org/10.1038/s44161-022-00157-y
work_keys_str_mv AT papaarianne radregulationofcav12channelscontrolscardiacfightorflightresponse
AT zakharovsergeyi radregulationofcav12channelscontrolscardiacfightorflightresponse
AT katchmanalexandern radregulationofcav12channelscontrolscardiacfightorflightresponse
AT kushnerjareds radregulationofcav12channelscontrolscardiacfightorflightresponse
AT chenbixing radregulationofcav12channelscontrolscardiacfightorflightresponse
AT yanglin radregulationofcav12channelscontrolscardiacfightorflightresponse
AT liuguoxia radregulationofcav12channelscontrolscardiacfightorflightresponse
AT jimenezalejandrosanchez radregulationofcav12channelscontrolscardiacfightorflightresponse
AT eisertrobynj radregulationofcav12channelscontrolscardiacfightorflightresponse
AT bradshawgarya radregulationofcav12channelscontrolscardiacfightorflightresponse
AT dunwen radregulationofcav12channelscontrolscardiacfightorflightresponse
AT alishahr radregulationofcav12channelscontrolscardiacfightorflightresponse
AT rodriquesaaron radregulationofcav12channelscontrolscardiacfightorflightresponse
AT zhoukaren radregulationofcav12channelscontrolscardiacfightorflightresponse
AT topkaraveli radregulationofcav12channelscontrolscardiacfightorflightresponse
AT yangmu radregulationofcav12channelscontrolscardiacfightorflightresponse
AT morrowjohnp radregulationofcav12channelscontrolscardiacfightorflightresponse
AT tsaiemilyj radregulationofcav12channelscontrolscardiacfightorflightresponse
AT karlinarthur radregulationofcav12channelscontrolscardiacfightorflightresponse
AT wanelaine radregulationofcav12channelscontrolscardiacfightorflightresponse
AT kalocsaymarian radregulationofcav12channelscontrolscardiacfightorflightresponse
AT pittgeoffreys radregulationofcav12channelscontrolscardiacfightorflightresponse
AT colecrafthenrym radregulationofcav12channelscontrolscardiacfightorflightresponse
AT benjohnymanu radregulationofcav12channelscontrolscardiacfightorflightresponse
AT marxsteveno radregulationofcav12channelscontrolscardiacfightorflightresponse