Cargando…

Regulation of glutamate homeostasis in the nucleus accumbens by astrocytic CB1 receptors and its role in cocaine-motivated behaviors

Cannabinoid type 1 receptors (CB1Rs) orchestrate brain reward circuitry and are prevalent neurobiological targets for endocannabinoids and cannabis in the mammalian brain. Decades of histological and electrophysiological studies have established CB1R as presynaptic G-protein coupled receptors (GPCRs...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lan-Yuan, Kim, Andrew Y., Cheer, Joseph F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681119/
https://www.ncbi.nlm.nih.gov/pubmed/36419922
http://dx.doi.org/10.1016/j.addicn.2022.100022
Descripción
Sumario:Cannabinoid type 1 receptors (CB1Rs) orchestrate brain reward circuitry and are prevalent neurobiological targets for endocannabinoids and cannabis in the mammalian brain. Decades of histological and electrophysiological studies have established CB1R as presynaptic G-protein coupled receptors (GPCRs) that inhibit neurotransmitter release through retrograde signaling mechanisms. Recent seminal work demonstrates CB1R expression on astrocytes and the pivotal function of glial cells in endocannabinoid-mediated modulation of neuron-astrocyte signaling. Here, we review key facets of CB1R-mediated astroglia regulation of synaptic glutamate transmission in the nucleus accumbens with a specific emphasis on cocaine-directed behaviors.