Cargando…
Clinician's guide to trustworthy and responsible artificial intelligence in cardiovascular imaging
A growing number of artificial intelligence (AI)-based systems are being proposed and developed in cardiology, driven by the increasing need to deal with the vast amount of clinical and imaging data with the ultimate aim of advancing patient care, diagnosis and prognostication. However, there is a c...
Autores principales: | Szabo, Liliana, Raisi-Estabragh, Zahra, Salih, Ahmed, McCracken, Celeste, Ruiz Pujadas, Esmeralda, Gkontra, Polyxeni, Kiss, Mate, Maurovich-Horvath, Pal, Vago, Hajnalka, Merkely, Bela, Lee, Aaron M., Lekadir, Karim, Petersen, Steffen E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681217/ https://www.ncbi.nlm.nih.gov/pubmed/36426221 http://dx.doi.org/10.3389/fcvm.2022.1016032 |
Ejemplares similares
-
Prediction of incident cardiovascular events using machine learning and CMR radiomics
por: Pujadas, Esmeralda Ruiz, et al.
Publicado: (2022) -
Atrial fibrillation prediction by combining ECG markers and CMR radiomics
por: Pujadas, Esmeralda Ruiz, et al.
Publicado: (2022) -
The role of obesity-related cardiovascular remodelling in mediating incident cardiovascular outcomes: a population-based observational study
por: Szabo, Liliana, et al.
Publicado: (2023) -
Cardiac Magnetic Resonance Radiomics Reveal Differential Impact of Sex, Age, and Vascular Risk Factors on Cardiac Structure and Myocardial Tissue
por: Raisi-Estabragh, Zahra, et al.
Publicado: (2021) -
Automated T1 and T2 mapping segmentation on cardiovascular magnetic resonance imaging using deep learning
por: Kalapos, András, et al.
Publicado: (2023)